
- •1 Механическое движение. Система отсчета. Путь и перемещение.
- •2 Скорость. Ускорение
- •3 Вращательное движение, его кинематические и динамические характеристики
- •4 Сила и масса. Законы ньютона
- •5 Импульс силы и импульс тела. Закон сохранения импульса. Неупругий удар.
- •6 Работа и механическая энергия. Закон сохранения энергии в механике. Упругий удар.
- •7 Момент импульса. Закон сохранения момента импульса.
- •8 Гравитационное поле. Его напряженность и потенциал.
- •9 Принцип относительности галилея. Сложение скоростей.
- •10 Принцип относительности эйнштейна.
- •11 Идеальный газ уравнения состояния идеального газа.
- •12 Теплоемкость идеального гаа. Теплоемкость в изопроцессах.
- •13. Изотермический, изобарный, изохорный и адиабатный процессы в идеальных газах
- •14 Внутренняя энергия идеального газа. Работа газа и теплота.
- •15 Первое правило термодинамики. Его применение к изопроцессам.
- •16 Круговые процессы. Цикл карно.
- •17 Энтропия. Второе и третье начала термодинамики.
- •18 Распределение максвела по скоростям и энергиям. Наиболее вероятная, средняя арифметическая и средняя квадратичная скорости молекул.
- •19 Барометрическая формула. Распределение больцмана.
- •20 Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.
- •21.Точечный электроический заряд.Закон сохранения электрического заряда.Закон кулона
- •22.Электростатическое поле, его напряженность и потенциал
- •23.Проводники в электростатическом поле.Электроемкость.Конденсаторы
- •24.Полярные и неполярные диэлектрики.Диэлектрическая проницаемость вещества.Электрическое смещение.Условия для электростатического поля на границе раздела сред
- •25.Энергия электростатического поля.Энергия заряженного конденсатора
- •26.Постоянный ток и его характиристики
- •27.Законы ома и джоуля-ленца.Дифференциальная форма законов ома и джоуля-ленца
- •28.Закон ома для полной цепи.Правила кирхгофа
- •29.Классические представления об электропроводимисти металлов
- •31. Магнитное поле и его характеристики
- •32.Закон био-савара-лапласа
- •33.Закон полного тока для магнитного поля
- •34.Работа сил магнитного поля по перемещению проводника с током.Магнитный поток
- •35.Энергия магнитного поля
- •36.Основной закон электромагнитной индукции
- •37.Самоиндукция.Индуктивность
- •38.Взаимная индукция.Трансформаторы
- •39.Гармонические колебания.Характеристики колебаний
- •40.Сложение гармонических колебаний.Биения
- •41.Электромагнитные волны.Шкала электромагнитных волн
- •42.Продольные и поперечные волны.Уравнение волны.Характеристики волн.Интерференция волн.Стоячие волны
- •43.Пространственная и временная когерентность.Интерференция света
- •44.Дифракция света
- •45.Поляризация света.Закон маллюса.Закон брюстера
- •46.Тепловое излучение.Законы теплового излучения абсолютно черного тела.Гипотеза планка
- •47.Фотоэффект.Виды фотоэффекта.Законы столетова.Уравнение эйнштейна для внешнего фотоэффекта. Эффект комптона
- •48.Опыты резерфорда.Планетарная модель атома
- •49.Гипотеза де бройля и её эксперементальное подтверждение
- •50.Соотношение неопределенностей.Уравнение шредингера
- •51.Пространственное квантование.Опыт штена и герлаха.Спин электрона
- •52.Спектр атома водорода.Электронные оболочки.Квантовые числа
- •53.Строение ядра.Дефект массы,энергия связи ядра
- •54.Радиоактивность.Активность,постоянная распада,период полураспада.Закон радиоактивного распада.
- •57.Ядерные реакции.Цепная реакция деления ядер.Реакции термоядерного синтеза.
- •58.Дозиметрические величины.Приборы для измерения уровня радиации
- •59.Классификация элементарных частиц
- •60.Понятие о кварках
16 Круговые процессы. Цикл карно.
Круговой процесс — процесс, при котором газ, пройдя через ряд состояний, возвращается в исходное. Если круговой процесс на диаграмме P-V протекает по часовой стрелке, то часть тепловой энергии, полученной от нагревателя, превращается в работу. Так работает тепловая машина. Если круговой процесс на диаграмме P-V протекает против часовой стрелки, то тепловая энергия передается от холодильника (тела с меньшей температурой) к нагревателю (телу с большей температурой) за счет работы внешней силы. Так работает холодильная машина.
Цикл Карно
|
Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[3][4].
Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действияиз всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно[5].
Описание цикла Карно
1. Изотермическое
расширение (на рис. 1 — процесс
A→Б). В начале процесса рабочее тело
имеет температуру ,
то есть температуру нагревателя. Затем
тело приводится в контакт с нагревателем,
который изотермически (при постоянной
температуре) передаёт емуколичество
теплоты
.
При этом объём рабочего тела увеличивается,
оно совершает механическую работу, а
его энтропия возрастает.
2. Адиабатическое
расширение (на рис. 1 — процесс
Б→В). Рабочее тело отсоединяется от
нагревателя и продолжает расширяться
без теплообмена с окружающей средой.
При этом температура тела уменьшается
до температуры холодильника ,
тело совершает механическую работу, а
энтропия остаётся постоянной.
3. Изотермическое
сжатие (на рис. 1 — процесс В→Г).
Рабочее тело, имеющее температуру ,
приводится в контакт с холодильником
и начинает изотермически сжиматься под
действием внешней силы, отдавая
холодильнику количество теплоты
.
Над телом совершается работа, его
энтропия уменьшается.
4. Адиабатическое сжатие (на рис. 1 — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.