Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:ИДЗ по МАТАН. (Ч.2).docx
X
- •Министерство образования и науки
- •1. Вычислить неопределенный интеграл.
- •2. Вычислить неопределенный интеграл.
- •3. Вычислить неопределенный интеграл.
- •4. Вычислить неопределенный интеграл.
- •5. Проинтегрировать дробно-рациональную функцию.
- •6. Вычислить неопределенный интеграл.
- •7. Вычислить неопределенный интеграл.
- •8. Вычислить определенный интеграл.
- •9. Вычислить определенный интеграл.
- •10. Вычислить площадь фигуры, ограниченной линиями, заданными в декартовых координатах. Сделать чертеж.
- •11. Вычислить площадь фигуры, ограниченной линиями, заданными параметрическими уравнениями. Сделать чертеж.
- •12. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах. Сделать чертеж.
- •13. Вычислить длины дуг кривых, заданных параметрическими уравнениями.
- •14. Вычислить объемы тел, образованных вращением фигур, ограниченных графиками функций.
- •15. Выяснить сходимость несобственного интеграла.
- •Методические указания к выполнению индивидуальных домашних заданий
- •Неопределенный интеграл
- •Основные методы интегрирования.
- •1) Подынтегральная функция является произведением многочлена на показательную или тригонометрическую функцию.
- •2) Подынтегральная функция является произведением многочлена на логарифмическую или обратную тригонометрическую функцию.
- •3) Интегралы вида: ,.
- •1) Интегралы вида , где m и n- целые числа.
- •2) Интегралы вида , гдеивходят в подынтегральную рациональную функцию, только в четных степенях.
- •3) Интегралы вида , гдеивходят в подынтегральную рациональную функцию в нечетных степенях.
- •2) Если в подынтегральную функцию входят радикалы с разными показателями вида , и т.Д. Или,и т.Д.
- •3) Интеграла вида .
- •4) Тригонометрические подстановки.
- •Определенный интеграл и его приложения
- •Несобственный интеграл
Несобственный интеграл
Задание 15. Сходимость несобственного интеграла.
Несобственные интегралы по бесконечному промежутку.
Пусть
функция
непрерывна на промежутке
,
тогда очевидно, что при любом
имеет смысл интеграл
.
Будем расширять промежуток
,
увеличивая
.
Тогда, если существует предел:
,
то этот предел называетсянесобственным
интегралом
от функции
по бесконечному промежутку
и обозначается:
.
Отметим,
что если указанный предел существует
и конечен, то интеграл
называетсясходящимся,
в противном случае – расходящимся.
Пример.
Выяснить
сходимость несобственного интеграла
.
Решение.

.
Следовательно, исходный интеграл – сходится.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
