
- •1. Методы проецирования. Комплексный чертеж
- •1.1. Введение. Цель и задачи курса
- •1.2. Понятие о методах проецирования
- •1.3. Свойства ортогонального проецирования
- •1.4. Методы прямоугольного проецирования на две и три взаимно перпендикулярные плоскости проекций. Проекции точки, комплексный чертеж.
- •1.4.1. Метод Монжа, комплексный чертеж.
- •1.4.2. Ортогональные проекции точки в системе двух плоскостей проекций
- •1.4.2. Ортогональные проекции точки в системе трех плоскостей проекций
- •2. Проекции прямой
- •2.1. Прямые общего и частного положения
- •2.2. Следы прямой линии
- •2.3. Определение натуральной длины отрезка прямой и углов ее наклона к плоскостям проекций
- •2.4. Отображение взаимного положения двух прямых
- •1. Параллельные прямые линии.
- •2. Пересекающиеся прямые.
- •3. Скрещивающиеся прямые
- •3. Проекции плоскости
- •3.1. Способы задания плоскости на чертеже
- •3.2. Точка и прямая в плоскости
- •3.3. Линии особого положения плоскости
- •3.3. Положение плоскостей относительно плоскостей проекций
- •3.4. Отображение относительного положения двух плоскостей
- •3.4.1. Параллельные плоскости
- •3.4.2. Пересекающиеся плоскости
- •3.4.3. Взаимно перпендикулярные плоскости
- •3.5. Отображение относительного положения прямой и плоскости
- •3.5.1. Параллельность прямой и плоскости
- •3.5.2. Пересечение прямой с плоскостью
- •3.5.3. Перпендикулярность прямой и плоскости
- •Преобразование чертежа
- •4.1. Способ замены плоскостей проекций
- •4.2. Способ вращение вокруг проецирующих прямых
- •4.3. Способ плоско-параллельного перемещения
- •5. Поверхности
- •5.1. Многогранники. Построение точки на поверхности многогранника
- •5.2. Кривые поверхности. Классификация поверхностей. Проецирование поверхностей
- •5.3. Пересечение поверхностей плоскостями
- •5.4. Взаимное пересечение поверхностей
- •6. Развертки поверхностей
- •7. Аксонометрические проекции
- •7.1. Образование аксонометрических проекций
- •7.2. Стандартные аксонометрические проекции
- •7.3. Аксонометрические проекции окружностей, параллельных плоскостям проекций
- •7.4. Аксонометрические построения
3.2. Точка и прямая в плоскости
Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.
Если точка принадлежит плоскости, то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.
Рассмотрим пример (рис. 34). Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(a//b).
|
|
|
|
| |||
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 34. Точка, принадлежащая плоскости |
Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2 (СÎa,BÎaÞ mÎa). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, m ÎaÞ АÎa).
Сформулируем теперь условие принадлежности прямой плоскости как аксиомы:
Аксиома 1. Прямая принадлежит плоскости, если она проходит через две точки принадлежат этой плоскости.
Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости.
Проиллюстрируем примерами использование этих аксиом.
Пусть требуется найти недостающие проекции прямой m, если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k (рис. 35).
Проекция прямой m2 пересекает проекции прямых n2 и k2 в точках В2 и С2 соответственно. Для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек, лежащих на прямых n и k соответственно.
Таким образом, точки В и С принадлежат плоскости, заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит, согласно аксиоме 1, прямая принадлежит этой плоскости.
Пусть теперь через точку В необходимо провести прямую m, если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k (рис. 36).
Пусть точка В принадлежит прямой n, лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1.
Таким образом, точка В принадлежит плоскости, заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме 2 прямая принадлежит этой плоскости.
|
|
|
|
| |||
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 35. Прямая и плоскость имеют две общие точки |
|
|
|
|
| |||
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 36. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости |