Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция.doc
Скачиваний:
237
Добавлен:
04.06.2015
Размер:
2.78 Mб
Скачать

3.2. Точка и прямая в плоскости

Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.

Если точка принадлежит плоскости, то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.

Рассмотрим пример (рис. 34). Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(a//b).

а) модель

б) эпюр

Рисунок 34. Точка, принадлежащая плоскости

Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2  в точках С2 и В2 (СÎa,BÎaÞ mÎa). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, m ÎaÞ АÎa).

Сформулируем теперь условие принадлежности прямой плоскости как аксиомы:

Аксиома 1. Прямая принадлежит плоскости, если она проходит через две точки принадлежат этой плоскости.

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости.

Проиллюстрируем примерами использование этих аксиом.

Пусть требуется найти недостающие проекции прямой m, если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k (рис. 35).

Проекция прямой m2 пересекает проекции прямых n2 и k2 в точках В2 и С2 соответственно. Для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек, лежащих на прямых n и k соответственно.

Таким образом, точки В и С принадлежат плоскости, заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит, согласно аксиоме 1, прямая принадлежит этой плоскости.

Пусть теперь через точку В необходимо провести прямую m, если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k (рис. 36).

Пусть точка В принадлежит прямой n, лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию  В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1,  как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1  параллельно проекции k1.

Таким образом, точка В принадлежит плоскости, заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме 2 прямая принадлежит этой плоскости.

 

а) модель

б) эпюр

Рисунок 35. Прямая и плоскость имеют две общие точки

а) модель

б) эпюр

Рисунок 36. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости