
- •1. Методы проецирования. Комплексный чертеж
- •1.1. Введение. Цель и задачи курса
- •1.2. Понятие о методах проецирования
- •1.3. Свойства ортогонального проецирования
- •1.4. Методы прямоугольного проецирования на две и три взаимно перпендикулярные плоскости проекций. Проекции точки, комплексный чертеж.
- •1.4.1. Метод Монжа, комплексный чертеж.
- •1.4.2. Ортогональные проекции точки в системе двух плоскостей проекций
- •1.4.2. Ортогональные проекции точки в системе трех плоскостей проекций
- •2. Проекции прямой
- •2.1. Прямые общего и частного положения
- •2.2. Следы прямой линии
- •2.3. Определение натуральной длины отрезка прямой и углов ее наклона к плоскостям проекций
- •2.4. Отображение взаимного положения двух прямых
- •1. Параллельные прямые линии.
- •2. Пересекающиеся прямые.
- •3. Скрещивающиеся прямые
- •3. Проекции плоскости
- •3.1. Способы задания плоскости на чертеже
- •3.2. Точка и прямая в плоскости
- •3.3. Линии особого положения плоскости
- •3.3. Положение плоскостей относительно плоскостей проекций
- •3.4. Отображение относительного положения двух плоскостей
- •3.4.1. Параллельные плоскости
- •3.4.2. Пересекающиеся плоскости
- •3.4.3. Взаимно перпендикулярные плоскости
- •3.5. Отображение относительного положения прямой и плоскости
- •3.5.1. Параллельность прямой и плоскости
- •3.5.2. Пересечение прямой с плоскостью
- •3.5.3. Перпендикулярность прямой и плоскости
- •Преобразование чертежа
- •4.1. Способ замены плоскостей проекций
- •4.2. Способ вращение вокруг проецирующих прямых
- •4.3. Способ плоско-параллельного перемещения
- •5. Поверхности
- •5.1. Многогранники. Построение точки на поверхности многогранника
- •5.2. Кривые поверхности. Классификация поверхностей. Проецирование поверхностей
- •5.3. Пересечение поверхностей плоскостями
- •5.4. Взаимное пересечение поверхностей
- •6. Развертки поверхностей
- •7. Аксонометрические проекции
- •7.1. Образование аксонометрических проекций
- •7.2. Стандартные аксонометрические проекции
- •7.3. Аксонометрические проекции окружностей, параллельных плоскостям проекций
- •7.4. Аксонометрические построения
3.4.3. Взаимно перпендикулярные плоскости
Частный случаем пересечения плоскостей являются взаимно перпендикулярные плоскости.
Известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей, перпендикулярных данной плоскости a(h,f). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a. Для того, чтобы через точку А провести плоскость, перпендикулярную плоскости a(h,f), необходимо из точки А провести прямую n, перпендикулярную плоскости a(h,f), (горизонтальная проекция n1 перпендикулярна горизонтальной проекции горизонтали h1, фронтальная проекция n2 перпендикулярна фронтальной проекции фронтали f2). Любая плоскость, проходящая через прямую n будет перпендикулярна плоскости a(h,f), поэтому для задания плоскости через точку А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми (m,n), будет перпендикулярна плоскости a(h,f)(рис. 50).
|
|
|
|
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 50. Взаимно перпендикулярные плоскости |
3.5. Отображение относительного положения прямой и плоскости
Известны три варианта взаимного расположения прямой и плоскости:
Прямая принадлежит плоскости.
Прямая параллельна плоскости.
Прямая пересекает плоскость.
Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.
Большое значение для задач начертательной геометрии имеет частный случай пересечения прямой и плоскости, когда прямая перпендикулярна плоскости.
3.5.1. Параллельность прямой и плоскости
При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости и не принадлежит этой плоскости.
Пусть дана плоскость общего положения ABC и прямая общего положения а. Требуется оценить их взаимное положение (рис. 51).
Для этого через прямую а проведем вспомогательную секущую плоскость g - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостей g и АВС - прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а1 и со следом плоскости g. Проекция прямой п2 параллельна а2, п3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.
|
|
|
|
| |||
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 51. Прямая параллельная плоскости |
3.5.2. Пересечение прямой с плоскостью
Нахождение точки пересечения прямой линии и плоскости – одна из основных задач начертательной геометрии.
Пусть дана плоскость AВС и прямая а. Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.
Алгоритм решения задачи (рис. 52) следующий:
Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость g.
|
|
|
|
| |||
| |||
| |||
а) модель |
б) эпюр | ||
Рисунок 52. Нахождение точки пересечения прямой и плоскости |
Находим линию пересечения вспомогательной плоскости с заданной. Горизонтальный след плоскости g1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей g и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.
Определяем точку пересечения прямых а и п. На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.
Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.