
- •Федеральное агентство по образованию
- •Оглавление
- •Работа № 1 эффективность и качество освещения
- •Общие сведения
- •Основные светотехнические понятия и определения
- •Виды и системы освещения
- •Источники искусственного освещения.
- •Нормирование производственного освещения
- •Измерение освещенности
- •Условия проведения работы №1
- •Порядок проведения лабораторной работы № 1 (ауд. 106 гк)
- •Порядок проведения лабораторной работы №1а (ауд.104 гк)
- •Номера вариантов для лаб. Работы №1а и характеристика зрительной работы
- •Типы ламп и их характеристики
- •Работа № 2 микроклимат производственных помещений.
- •Общие сведения
- •Оптимальные микроклиматические условия
- •Допустимые значения параметров микроклимата в рабочей зоне.
- •Условия проведения работы
- •Задание на работу
- •Порядок выполнения работы
- •Максимальная влажность воздуха при различных температурах (плотность насыщенных паров)
- •Варианты заданий
- •Вопросы для самоконтроля
- •Работа №3. Исследование запыленности воздушной среды
- •Общие сведения
- •Классификация веществ по пдк
- •Значение коэффициента k.
- •Условия проведения работы
- •Порядок выполнения
- •Обработка результатов измерений.
- •Варианты заданий
- •Вопросы для самоконтроля
- •Работа № 4 звукоизоляция и звукопоглощение
- •Общие сведения
- •Защита от шума.
- •Коэффициенты частоты и скорость продольных звуковых волн в различных конструкционных материалах.
- •Порядок выполнения работы.
- •Вопросы для самоконтроля
- •Работа № 5 исследование виброизоляции
- •Общие сведения
- •Методы и средства защиты от вибрации
- •Условия проведения работы
- •Задание на работу
- •Номера вариантов заданий
- •Порядок выполнения работы
- •Технические параметры пружин
- •Обработка результатов измерения
- •Содержание работы № 5а
- •1. Описание лабораторной работы.
- •2. Порядок выполнения работы
- •Задание на работу № 5а.
- •Номера вариантов заданий.
- •Технические параметры пружин
- •Вопросы для самоконтроля
- •Работа №6 защита от теплового излучения
- •Общие сведения
- •Содержание работы. Описание стенда
- •Требования безопасности при выполнении лабораторной работы
- •Порядок проведения лабораторной работы
- •Напряжение источника питания и температура нагревателя
- •Вопросы для самоконтроля
- •Работа № 8 исследование опасности поражения током в трехфазных электрических сетях
- •Общие сведения
- •Возможные случаи прикосновения к токоведущим частям электрических сетей
- •Анализ опасности поражения в трехфазных сетях с изолированной нейтралью (система заземления it)
- •Опасность поражения электрическим током в электрических сетях с глухозаземленной нейтралью (система заземления tn)
- •Анализ опасности поражения в пятипроводной сети системы заземления tn-s (с глухозаземленной нейтралью)
- •Сопротивление рабочего заземляющего устройства (в Ом)
- •Прикосновение к заземленным нетоковедущим частям, оказавшимися под напряжением
- •II. Практическая часть занятия
- •2.1. Условия проведения лабораторной работы
- •Работа на лабораторной установке сэб-1
- •1. Однофазное прикосновение в сети с изолированной нейтралью.
- •2. Однофазное прикосновение в сети с заземленной нейтралью.
- •3. Защитные меры в трехпроводной сети с изолированной нейтралью.
- •Работа на лабораторной установке сэб-2
- •1. Однофазное прикосновение в сети с изолированной нейтралью.
- •2. Однофазное прикосновение в сети с заземленной нейтралью.
- •3. Защитные меры в трехпроводной сети с изолированной нейтралью.
- •Работа на лабораторной установке сэб-3
- •Обработка экспериментальных данных
- •Вопросы для самоконтроля
- •Работа № 9 исследование электрического сопротивления тела человека
- •Основные сведения о воздействии электрического тока.
- •2.1. Условия проведения работы
- •2.2. Порядок выполнения работы
- •Обработка экспериментальных данных
- •Вопросы для самоконтроля
- •Работа № 10 Исследование эффективности защитных мер в электроустановках
- •Основные защитные меры в электроустановках.
- •I. Теоретическая часть
- •1.1. Защитное заземление
- •Защитное заземление в электрических сетях, изолированных от земли (система заземления it)
- •Защитное заземление в заземленных электрических сетях (система заземления tn)
- •Вывод. Защитное заземление в заземленных электрических сетях до 1000 в неэффективно.
- •Защитное зануление
- •II. Практическая часть
- •2.2. Порядок выполнения работы а. Определение удельного сопротивления грунта.
- •Б. Расчет заземляющего устройства
- •Удельное сопротивление грунта
- •Величины климатических коэффициентов в зависимости от вида грунта и глубины заложения заземлителей
- •Работа 10а Порядок выполнения работы по исследованию эффективности защитного заземления и зануления:
- •1. Исследование защитного заземления электрической сети с изолированной нейтралью:
- •2. Исследования эффективности защитного зануления в электрической сети с глухозаземлённой нейтралью.
- •Вопросы для самоконтроля
- •Работа № 11
- •Защита от облучения электромагнитным
- •Полем сверхвысокой частоты
- •Общие сведения
- •Измерение уровня электромагнитного излучения, создаваемого на рабочем месте экспериментальной установкой Условия проведения работы
- •Порядок выполнения работы
- •Пример расчета
- •Варианты заданий.
- •Работа № 12 измерение уровня электромагнитного поля, создаваемого свч печью Условия проведения работы
- •Порядок выполнения работы
- •Варианты заданий
- •Вопросы для самоконтроля
- •Работа № 13 лазерное излучение и защита от него Общие сведения
- •Основные характеристики лазерного излучения
- •Воздействие лазерного излучения на человека
- •Классификация лазеров по степени опасности
- •Защитные мероприятия при эксплуатации лазерных установок
- •Требования к конструкции лазерных изделий
- •Требования к эксплуатации лазерных изделий
- •Условия проведения работы
- •Порядок выполнения работы
- •Варианты заданий
- •Вопросы для самоконтроля
- •Работа № 14 ионизирующие излучения Общие сведения
- •Биологическое воздействие излучений.
- •Единицы доз.
- •Нормы радиационной безопасности.
- •Основные пределы доз
- •Защитные мероприятия.
- •Геометрическое ослабление излучений.
- •Порядок измерения
- •Обработка результатов опытов и расчетные задания
- •Условия безопасности при проведении работ.
- •Вопросы для самоконтроля
- •Ефремов с.В., Малаян к.Р., Малышев в.П., Монашков в.В. И др. Безопасность жизнедеятельности. Лабораторный практикум.
- •195251, Санкт-Петербург, Политехническая ул., 29.
Единицы доз.
Общей единицей (мерой) воздействия ионизирующего излучения на человека является доза. Различают следующие основные виды доз: поглощенная, эквивалентная, эффективная, экспозиционная.
Доза поглощенная (D) – величина энергии ионизирующего излучения, переданная веществу:
,
где
– средняя энергия, переданная ионизирующим
излучением веществу, находящемуся в
элементарном объеме,
–
масса вещества в этом объеме.
Доза эквивалентная
(Н) – сумма
поглощенных доз в органах или тканях,
умноженных на соответствующий взвешивающий
коэффициент для данного вида излучения
:
|
|
где
- средняя
поглощенная доза в органе или ткани i
- того ионизирующего излучения.
Взвешивающие коэффициенты учитывают относительную опасность различных видов излучения в индуцировании неблагоприятных биологических эффектов и зависят от ионизирующей способности излучений. Для различных видов излучения значения взвешивающих коэффициентов составляют:
фотоны любых энергий, электроны ………………………1
нейтроны с энергией менее 10 кэВ…………………………5
от 10 кэВ до 100 кэВ……………….10
альфа-частицы………………………………………………20
Доза эффективная (Е) – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:
|
|
где
- взвешивающий коэффициент для органа
или ткани, который характеризует
относительный риск на единицу дозы по
выходу отдаленных последствий при
облучении данного органа по отношению
к облучению всего тела. При облучении
организма в целом
=1, а при облучении отдельных органов
составляет:
гонады (половые железы) - 0,2; желудок –
0,12; печень – 0,05; кожа – 0,01 и т.д.
-эквивалентная
доза в соответствующем органе или ткани.
Экспозиционная доза (X) - это количественная характеристика фотонного излучения, основанная на его ионизирующем действии в сухом атмосферном воздухе и представляющая собой отношение суммарного заряда (dQ) ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов и позитронов, которые были образованы фотонами в малом объеме воздуха, к массе воздуха (dm) в этом объеме (справедливо для фотонного излучения с энергией до 3 МэВ):
|
|
На практике в качестве характеристики ионизирующего излучения широко используется единица рентген (Р), которая является внесистемной единицей экспозиционной дозы (при прохождении излучения через 1 куб.см воздуха создаются ионы, несущие заряд в 1 электростатическую единицу каждого знака). Экспозиционную дозу в рентгенах и поглощенную дозу в радах для биологических тканей можно считать совпадающими с погрешностью до 5%, которая вызвана тем, что экспозиционная доза не учитывает ионизацию, обусловленную тормозным излучением электронов и позитронов.
Единицы измерения доз в системе СИ и внесистемные единицы измерения приведены в таблице 1.
Таблица 1
Доза |
Единицы СИ |
Внесистемные единицы |
Поглощенная |
Дж/кг, Грей (Гр) |
1 рад=0,01 Гр |
Эквивалентная |
Грей
|
1 бэр=0,01 Зв |
Эффективная |
Зиверт
|
|
Экспозиционная |
Кулон/кг, (Кл/кг) |
Рентген (Р) 1Р=2,58 ∙ 10-4 Кл/кг 1 Р = 1 рад = 0,013 Зв (в биол.тканях) |
Для характеристики изменения дозы во времени вводится понятие мощности дозы. Мощность экспозиционной, поглощенной и эквивалентной доз соответственно определяются:
|
|
Характеристикой
активности радионуклида (самопроизвольного
распада) является отношение числа
спонтанных ядерных превращений,
происходящих в источнике за единицу
времени. Единицей радиоактивности
является беккерель (Бк). Беккерель
равен активности радионуклида в
источнике, в котором за время 1с происходит
одно спонтанное ядерное превращение.
Внесистемная единица активности -кюри
(Ки). 1 Ки = 3,700 1010Бк Активность
радионуклидов зависит от времени. Время,
в течение которого распадается половина
исходных атомов, называется периодом
полураспада. Так, например, период
полураспада йода8,05 суток, а у урана
- 4,5 млрд. лет