Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

матан Бесов - весь 2012

.pdf
Скачиваний:
31
Добавлен:
03.06.2015
Размер:
16.85 Mб
Скачать

a= ±α0, α1α2 . . .

!

n "

§

X Y #

$ x X

$ y Y % "

& X

Y ' $ ( ) f &

f : X → Y * f (x) ) f

x& $ y Y &

$ x X& y = f (x)

x X &

& $ y = f (x) Y

&

$ X )

f & Yf = {y : y = f (x)& x X} Y )

f

+ ,(- )

,-& ,- .

( f ) f (x)& y = f (x) / & f (x) (

f $ x& ( ) f

0 & ( f : X → Y

x x& x X& ( f

x x& x X E X

" & ( f E

E X f (E) {y1 y = f (x)& x E}

E& f (X) = Yf

D Y f 1(D) {x1 x X& f (x) D}

D

 

 

 

 

 

E X fE E → Y fE (x) f (x)

x E

f E

f : X → Y

{(x, f (x)) x X}

f X ϕ

T ϕ(T ) X !

" f ϕ f ◦ ϕ T

"

(f ◦ ϕ)(t) = f (ϕ(t)), t T.

# $

% "

& ' " f g E ( $

f (x) g(x) x E ) ! " (

f < g f = g f g f > g f > 0 f 0 f = 0 f = C E

* f : X → R $

$

" f (X) ! '

f $

E ! sup f sup f (E) inf f inf f (E) $

E E

"

E

+ ( ", ' ' ( ,

X R

%

y = c c xα

ax a > 0 ! loga x a > 0 a = 1 ! sin x cos x tg x ctg x ($

! arcsin x arccos x arctg x arcctg x

§

-% ! '

" " " ' . ' "

/ ( % %- $

n

Pn(x) = akxk.

k=0

P (x)

 

, ! P (x), Q(x) !, Q(x) 0.

Q(x)

 

!

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

x +

 

 

 

 

 

f (x) =

 

 

 

 

 

1 x !

 

3

 

 

 

 

 

 

 

 

 

x + x

"

! #

!

§

= {−{∞}+∞} ˆ = {∞} U (a) $ % R R R R ε

& ε a ε > 0 U (a) & a ' ! ! Uε(a) ε > 0(!

˚

˚

')(

Uε Uε(a) \ {a},

U (a) U (a) \ {a}

a

−∞ +∞ ∞

f

˚

Uδ0 (x0) x0 R A R

f x → x0

ε > 0 δ = δ(ε) > 0 : |f (x) − A| < ε

0 < |x − x0| < δ. (2)

 

! "

 

 

 

 

f

˚

 

 

 

 

ˆ

 

 

(a) a R # A

 

 

Uδ0

R

f x → a

 

 

 

 

ε > 0 δ = δ(ε) > 0

 

 

˚

 

: f (x) Uε(A) x Uδ (a).

 

$ % &

 

 

 

f

˚

 

 

 

 

ˆ

 

 

(a) a R # A

f

Uδ0

R

x → a

 

 

 

 

 

 

 

 

 

 

˚

 

 

 

U (A) U (a) : f (U (a)) U (A).

 

 

'

 

( lim f (x)

= A

f (x) → A x → a

 

 

x→a

 

%

 

 

 

 

) %

%

*

+ *

 

 

f

˚

 

 

 

ˆ

 

 

 

Uδ0

(a) a R # A R f

x → a lim f (xn) = A ,

n→∞

{ } ˚ → → ∞ xn xn Uδ0 n N xn a n

% -

§

 

' & 1 2

A f x → → a % A f

x → a -

f

.

˚

(a) R A = lim f (x)

 

Uδ0

 

 

 

x→a

% {xn}

˚ → → ∞

xn Uδ0 (a) xn a n & lim f (xn) = n→∞

= A

$+ ε > 0 # / ,

% % δ = δ(ε) > 0 f (x) Uε(A) x

˚

Uδ (a)

$ * xn → a n → ∞ /

˚

n nδ(ε) 0 / f (xn)

δ = δ(ε) nδ(ε) N. xn Uδ(ε)

Uε(A) n nδ(ε) f (xn) → A n → ∞

& 2 1 A = lim f (x) x→a

- & A = lim f (x)

x→a

% '

 

 

 

 

˚

(A).

ε0 > 0 : δ > 0 x Uδ (a) : f (x) Uε0

$ δ δ =

1

"

n

x xn

 

 

 

˚

 

 

 

n N xn U

1

 

(a) : f (xn) Uε0 (A).

 

n

 

0 {xn}

xn = a, xn → a (n → ∞), f (xn) → A (n → ∞),

A f x → a

- * ,

1 &

 

 

 

1

 

 

 

 

 

 

& lim sin

 

 

 

 

 

 

x "

 

 

 

 

 

 

 

x→0

' / * " ,

. {xn} =

 

 

 

{xn} =

 

 

 

 

 

 

 

 

 

1

 

 

 

1 π

2

2πn

 

 

 

 

 

 

 

 

 

 

 

πn

 

 

 

 

 

1

 

 

1

 

 

2

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim sin

= lim 0 = 0

lim sin

=

 

lim 1 = 1

 

xn

 

 

n→∞

n→∞

 

 

n→∞

xn

n→∞

 

 

 

 

 

$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A lim sin

1

 

x

 

x→0

 

 

 

 

§

 

 

f g h

˚

 

 

 

 

˚

 

 

(a) a R f

g h

→ A h(x) → A

Uδ0

Uδ0 (a) f (x)

x → a A R g(x) → A x → a

lim g(x) = A

x→a

! "

{xn}#

˚

(a)

n N, xn → a (n → ∞).

xn Uδ0

f (xn) g(xn) h(xn).

% f (xn) → A h(xn) → A &n → ∞' "

! ( (

g(xn) → A (n → ∞).

) {xn} "

 

lim g(x) = A

 

a

 

 

 

 

 

x→a

 

 

f g

 

R

˚

(a) lim f (x) = A lim g(x) = B A, B R

Uδ0

 

*

x→a

x→a

 

 

 

 

 

 

 

lim (f (x) ± g(x)) = A ± B

 

 

 

 

x→a

 

 

 

 

 

 

 

 

lim f (x)g(x) = AB

 

 

 

 

 

 

 

x→a

 

g(x) =

 

 

˚

 

 

 

 

 

 

 

 

0 x Uδ0 (a) B = 0

 

 

 

 

 

 

f (x)

 

A

 

 

 

 

lim

=

.

 

 

 

g(x)

 

 

 

 

x→a

B

+ ( "

( ( + , -

(

% {xn}

˚

(a)

n N, xn → a (n → ∞).

xn Uδ0

 

§

 

. ! lim f (xn)

= A lim g(xn) =

B "

n→∞

n→∞

 

% ( (

lim f (xn)g(xn) = AB ) "

n→∞

{xn}

lim f (x)g(x) = AB

x→a

§

f

˚

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Uδ0 (x0) x0 R

 

 

 

 

 

 

lim f (x)

 

 

 

 

 

x→x0

 

 

!

 

 

 

 

 

 

˚

ε > 0 δ = δ(ε) > 0 : |f (x ) − f (x )| < ε x , x

 

Uδ (x0).

 

 

%

lim f (x) = A R

. ! ε > 0 δ = δ(ε) > 0#

|f (x )

x→x0

 

 

˚

 

 

 

 

 

 

− A| < ε |f (x ) − A|

< ε x

, x

Uδ (x0) / |f (x )

− f (x )| |f (x ) − A| + |f (x ) − A| < ε + ε = 2ε x , x

˚

Uδ (x0)

% 0- % "

lim f (x) !

x→x0

1 2 &

˚

+ (' % xn Uδ0 (x0) xn → x0 n → ∞ ) , ε > 0 %

δ = δ(ε) > 0 0- )

( , nδ(ε) N

xn Uδ(ε)(x0) n nδ(ε) = nε / 0-

˚

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|f (xn) − f (xm)| < ε

n, m

nε

.

 

% {f (xn)} 0-

( + % A =

 

lim f (xn)

 

 

 

 

 

n→∞

 

- ,

 

 

 

 

 

 

˚

 

( {xn} xn

Uδ0

(x0) xn

→ x0

n → ∞ lim f (xn)

 

 

 

n→∞

A

lim f (xn) =

B = A

n→∞

 

˚

 

 

{xn} xn Uδ0

(x0) xn → x0 n → ∞

{f (x1) f (x2) f (x3) f (x4) . . .}

! "! "! A B # !

$% ! x0

& '

§

x0 R δ > 0 ( Uδ (x0 0) = (x0

− δ, x0] " x0

δ ) U (x0 0) *

x0 &

( Uδ (x0 + 0) = [x0, x0 + δ) "

x0 δ ) U (x0 + 0)

* x0

&

"

 

0) = Uδ (x0 0) \ {x0} = (x0 − δ, x0),

˚

Uδ (x0

˚

0) = U (x0 0) \ {x0},

 

U (x0

 

˚

+ 0) = Uδ (x0 + 0) \ {x0} = (x0, x0 + δ),

Uδ (x0

˚

+ 0) = U (x0 + 0) \ {x0}.

 

U (x0

 

 

x0 R

$% f

˚

0) ' A

ˆ

 

Uδ0 (x0

R "

 

f x0

+ f (x0 0)

lim

f (x) = A

 

x→x00

 

0) f (x) Uε(A).

ε > 0

˚

δ = δ(ε) > 0 : x Uδ(ε)(x0

§

 

, & f

x0 R * f (x0 + 0)

lim f (x)

 

 

x→x0+0

- *

 

f (+) lim

 

f (−∞) lim f (x),

f (x).

x→−∞

x→+

 

.$

!

.$

/ + & &

$%

0

1 ( + *

 

ˆ

$% lim f (x) = A A R

 

x→a

2 a *

* −∞ +∞ ∞

x0 0 x0 + 0 & x0 R ' & 3

$% * 2 "

x0 R f

˚

Uδ0 (x0) lim f (x)

x→x0

f (x0 0) f (x0 + 0) f (x0 0) = f (x0 + 0)

4

§

5 % f X → R "

E X x1, x2 E x1 < x2

f (x1) f (x2) f (x1) f (x2)

6 & &

& $% "

7 *" $% "

. & & *" $% "

−∞ a < b +∞ f

(a, b)

 

lim f (x) = sup f.

x→b−0

(a,b)

b = ++∞ − 0

+

sup f = B +

(a,b)

ε > 0

! xε (a, b)" f (xε) Uε(B) #$ δ = = δε > 0 % xε Uδ (b) & Uδ (b) ' xε(

˚

) f (Uδ (b 0)) Uε(B) ! f * % f (b − 0) = B

+, +

$# +, ! % ' f (a + 0)

f (a, b) x0

f (x0 0) f (x0 + 0)

§

a R a

−∞% +% x0 0% x0 + 0 &x0 R( -! f "

U (a) R # &

( x → a% lim f (x) = 0 &lim f (x) = (

x→a

x→a

%

$ #

! $

!

 

% $

! + $

!

$ % ! f % g #

˚

U (a)% a R $ a

" −∞% +% x0 0% x0 + 0 &x0

§

 

 

, C > 0

%

˚

 

 

 

|f (x)| C|g(x)| x U (a).

) . f = O(g) x → a

 

-! f g # +

x → a%

x → a.

f = O(g),

g = O(f )

/ . f (x) g(x) x → a

 

lim g(x) = K R K = 0 f g x→a f (x)

x → a

 

lim

|g(x)|

= |K| > 0 *

 

 

 

 

 

 

 

 

x→a |f (x)|

 

% δ > 0

 

 

1

 

|g(x)|

3

 

 

˚

 

 

2

|K|

|f (x)|

 

 

2

|K

| x Uδ (a).

0 +

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

2

˚

|g(x)|

2

|K| |f (x)|, |f (x)|

|K|

|g(x)| x Uδ (a),

f g 1

!

-! f g # +

& ( x → a & #

f g x → a(% f (x) = λ(x)g(x)% x

˚

U (a)%

lim λ(x) = 1

 

 

x→a

 

0 . / $ "

 

f g x → a g f x → a & (2

3

f g% g h x → a f h x → a &

 

(2

 

% 3

lim g(x) = 1 f g x → a x→a f (x)

R(

 

 

 

 

x2 = O(x) x → 0

x = O(x2) x → +

2x4 + 1 x2 x → +x2 1

x2 x1 −x x → 0

x → 0

x sin x tg x arcsin x arctg x ln(1 + x) ex 1.

g

f x → a

˚

g = o(f ) x a g(x) = ε(x)f (x) x U (a) !

lim ε(x) = 0"

x→a

# $! % f g & ! ' ! x → a ( % g

! % f " ) * α(x) = o(1) x → a ( '

& α(x) + ! % x → a"

x2 = o(x) x → 0

x = o(x2) x → +"

) ! ," -

* ( f g + !

*. % "

f f1 g g1 x → a

lim

f1

(x)

lim

f (x)

 

= lim

f1

(x)

 

 

 

 

 

 

 

(x)

 

 

(x)

x→a g1

x→a g(x)

x→a g1

/ * " / ! *

lim

x→0

f = λ1f1 g λ2g1

lim λ1(x) = 1.

x→a λ2(x)

ex 1

x

 

= lim

 

= 1.

sin x

 

x→0 x

§

0 ! * % f U (x0) x0

R x = x − x0

f = f (x0) = f (x0 + x) − f (x0)"

 

f

x0 ' &1 2 '

34

,

lim f (x) = f (x0)

 

 

x→x0

f = 0 lim lim

5

lim

 

x→0

x→0

x→x0

6

ε > 0 δ = δ(ε) > 04

|f (x) −f (x0)| < ε x4 |x −x0| < δ

7

ε > 0 δ = δ(ε) > 04

f (Uδ (x0)) Uε(f (x0))

8

U (f (x0)) U (x0)4 f (U (x0)) U (f (x0))

9 {xn}4

xn U (x0)

xn → x0 n → ∞ ! !

 

f (xn) → f (x0) n → ∞"

: * 3 , ; 9 $'

&1 2 3 % '

"

< ! ! 6 '

1 x * x0 9 1 '

xn * x0" - 6

x = x0 9 xn = x0

! & $"

f x0 f (x0) > 0 (f (x0) < 0)

U (x0)

f (x) > 0 (f (x) < 0) x U (x0)

 

/ * " = *

% f

x0 f '

3 x0" -*

f (x0) = d > 0" > *! ! ε = d2 > 0" ? ( '

δ > 0 |f (x)

− f (x0)| <

d

 

|x − x0| < δ

 

 

2

 

 

 

 

 

f (x) = f (x0)+(f (x)−f (x0)) > d−

d

=

d

> 0 x Uδ (x0).

 

2

 

 

 

2

 

 

f g x0

f + g f − g f g g(x0) = 0

f

x0

g

(f ± g)(x)

f (x) ± g(x)

! " # $ % ! " fg &

x0 f ±g f g

' # U (x0)( g(x) = 0 xU (x0) fg U (x0) ) &

# ! & " # f, g(

 

 

 

f (x)

 

 

lim f (x)

 

f (x0)

 

 

 

lim

f

 

(x) = lim

=

x→x0

=

=

f

(x0),

g

 

g(x)

 

 

lim g(x)

 

g(x0)

 

g

x→x0

x→x0

 

 

 

 

 

 

 

 

 

 

 

 

 

x→x0

 

 

 

 

 

 

*

" ! " # $# * # &

§

' ! " f X ! " ϕ + T , ϕ(T ) X - $ ! " &

" " ! " # f ϕ f ◦ ϕ T

! #

(f ◦ ϕ)(t) = f (ϕ(t)), t T.

§

f x0

ϕ t0 ϕ(t0) = x0

f ◦ ϕ t0

' y0 = f (x0) U (y0)

y0 f x0

U (x0) : f (U (x0)) U (y0)

f U (x0)

ϕ t0 U (t0) ϕ(U (t0)) U (x0)

ϕ

U (t0) U (t0) U (x0)

U (t0) !" # f ◦ϕ $

(f ◦ ϕ)(U (t0)) U (y0), % y0 = (f ◦ ϕ)(t0).

& " U (y0)

f ϕ t0 $ '

($ $ ) !" #

f x0

ϕ

˚

 

U (t0) lim ϕ(t) = x0

 

 

t→t0

 

lim (f ◦ ϕ)(t) = f ( lim ϕ(t)) = f (x0).

 

t→t0

t→t0

* + "

$ , $ $" U (y0)

˚

= f (x0)

U (t0) (f ◦ ϕ)(U (t0)) U (y0) y0

& " U (y0) "

$

* "% $ "-.$ *$ !" #- ϕ t0 $

/ t0 ϕ(t0) = = x0 % ϕ ) t0

$) ,

lim f (x) = y0 ϕ

˚

˚

x→x0

lim ϕ(t) = x0

U (t0) ϕ(U (t0)) x0

 

 

t→t0

lim (f ◦ ϕ)(t) = y0.

t→t0

f x0 f (x0) = y0

!

" ! # $

% U (x0 + 0) u(x0 0) x0 R

[x0, x0 + δ) (x0 − δ, x0] δ > 0

& f U (x0 + 0)

U (x0 0) "

x0

f (x0 + 0) = f (x0) ( f (x0 0) = f (x0)).

f "

x0 ' ' ' " x0

 

 

 

& f

 

˚

 

U (x0)

x0 R " x0

x0 x0 "

x0

( x0 " f "

) "

" f (x0 0) f (x0 + 0) * + f (x0 + 0)

−f (x0 0) " f x0 ,

+ f (x0 + 0) = f (x0 0)

x0 "

§

( " ) " -'

"

&

x < 0,

1

 

 

sgn x = 0

x = 0,

1

x > 0

sgn . / ' 0 1 " -'

+ 2

"

§

&

[a, b] " ' "

+ * + "

3 a b "

4 ' "

5 ' f

E E

x0 E : f (x0) = sup f

(f (x0) = inf f ).

E

E

 

 

* f

"

[a, b] B sup f +

*

3 '

[a,b]

 

 

 

n N xn [a, b] : f (xn) U

1

(B).

 

n

f (xn) → B n → ∞

{xn} a xnb n N

!"#$! {xnk }

xnk → x0 k → ∞

! # a xnk b #%

x0 [a, b] # f

x0

f (xnk ) → f (x0) k → ∞.

# {f (xnk )} ' % !" ! B ( #

f (xnk ) → B k → ∞.

) # #

sup f = B = f (x0).

[a,b]

*$ # % sup f < +

[a,b]

! f # % ! f

x0

+ ! f

#

,

! %

# ! [a, b] %

(a, b)- * ! # %

-

f

[a, b] f (x) > 0 x [a, b] d > 0 f (x) dx [a, b]

# ! f E !

x0 E

f (x) f (x0) x E.

§

, x0 ! f

E . f (x0) ! f

E / ! max f

E

+ !$! f

E f E / min f

E

, # %

! ! ( %

# #

f [a, b] f (a) = A f (b) = B C A B

ξ [a, b] : f (ξ) = C.

0 # ! A = = f (a) C f (b) = B [a, b]

[a1, b1] / #$ # !

f (a1) C f (b1) [a1, b1]

[a2, b2] / #$ # !

f (a2) C f (b2) ! # !$%

"#$! # {[an, bn]} !

f (an) C f (bn).

# ξ [an, bn]

n N , an → ξ bn → ξ

n → ∞ 1 # f ξ2

f (an) → f (ξ),

f (bn) → f (ξ) n → ∞.

! # #

f (ξ) C f (ξ) f (ξ) = C,

/

f [a, b] f (a) f (b)

ξ (a, b) : f (ξ) = 0.