- •Preface
- •Introduction
- •SWIG resources
- •About this manual
- •Prerequisites
- •Organization of this manual
- •How to avoid reading the manual
- •Credits
- •What’s new?
- •Bug reports
- •SWIG is free
- •Introduction
- •What is SWIG?
- •Life before SWIG
- •Life after SWIG
- •The SWIG package
- •A SWIG example
- •The swig command
- •Building a Perl5 module
- •Building a Python module
- •Shortcuts
- •Documentation generation
- •Building libraries and modules
- •C syntax, but not a C compiler
- •Non-intrusive interface building
- •Hands off code generation
- •Event driven C programming
- •Automatic documentation generation
- •Summary
- •SWIG for Windows and Macintosh
- •SWIG on Windows 95/NT
- •SWIG on the Power Macintosh
- •Cross platform woes
- •How to survive this manual
- •Scripting Languages
- •The two language view of the world
- •How does a scripting language talk to C?
- •Wrapper functions
- •Variable linking
- •Constants
- •Structures and classes
- •Shadow classes
- •Building scripting language extensions
- •Static linking
- •Shared libraries and dynamic loading
- •Linking with shared libraries
- •SWIG Basics
- •Running SWIG
- •Input format
- •SWIG Output
- •Comments
- •C Preprocessor directives
- •SWIG Directives
- •Simple C functions, variables, and constants
- •Integers
- •Floating Point
- •Character Strings
- •Variables
- •Constants
- •Pointers and complex objects
- •Simple pointers
- •Run time pointer type checking
- •Derived types, structs, and classes
- •Typedef
- •Getting down to business
- •Passing complex datatypes by value
- •Return by value
- •Linking to complex variables
- •Arrays
- •Creating read-only variables
- •Renaming declarations
- •Overriding call by reference
- •Default/optional arguments
- •Pointers to functions
- •Typedef and structures
- •Character strings and structures
- •Array members
- •C constructors and destructors
- •Adding member functions to C structures
- •Nested structures
- •Other things to note about structures
- •C++ support
- •Supported C++ features
- •C++ example
- •Constructors and destructors
- •Member functions
- •Static members
- •Member data
- •Protection
- •Enums and constants
- •References
- •Inheritance
- •Templates
- •Renaming
- •Adding new methods
- •SWIG, C++, and the Legislation of Morality
- •The future of C++ and SWIG
- •Objective-C
- •Objective-C Example
- •Constructors and destructors
- •Instance methods
- •Class methods
- •Member data
- •Protection
- •Inheritance
- •Referring to other classes
- •Categories
- •Implementations and Protocols
- •Renaming
- •Adding new methods
- •Other issues
- •Conditional compilation
- •The #if directive
- •Code Insertion
- •The output of SWIG
- •Code blocks
- •Inlined code blocks
- •Initialization blocks
- •Wrapper code blocks
- •A general interface building strategy
- •Preparing a C program for SWIG
- •What to do with main()
- •Working with the C preprocessor
- •How to cope with C++
- •How to avoid creating the interface from hell
- •Multiple files and the SWIG library
- •The %include directive
- •The %extern directive
- •The %import directive
- •The SWIG library
- •Library example
- •Creating Library Files
- •tclsh.i
- •malloc.i
- •Static initialization of multiple modules
- •More about the SWIG library
- •Documentation System
- •Introduction
- •How it works
- •Choosing a documentation format
- •Function usage and argument names
- •Titles, sections, and subsections
- •Formatting
- •Default Formatting
- •Comment Formatting variables
- •Sorting
- •Comment placement and formatting
- •Tabs and other annoyances
- •Ignoring comments
- •C Information
- •Adding Additional Text
- •Disabling all documentation
- •An Example
- •ASCII Documentation
- •HTML Documentation
- •LaTeX Documentation
- •C++ Support
- •The Final Word?
- •Pointers, Constraints, and Typemaps
- •Introduction
- •The SWIG Pointer Library
- •Pointer Library Functions
- •A simple example
- •Creating arrays
- •Packing a data structure
- •Introduction to typemaps
- •The idea (in a nutshell)
- •Using some typemaps
- •Managing input and output parameters
- •Input Methods
- •Output Methods
- •Input/Output Methods
- •Using different names
- •Applying constraints to input values
- •Simple constraint example
- •Constraint methods
- •Applying constraints to new datatypes
- •Writing new typemaps
- •Motivations for using typemaps
- •Managing special data-types with helper functions
- •A Typemap Implementation
- •What is a typemap?
- •Creating a new typemap
- •Deleting a typemap
- •Copying a typemap
- •Typemap matching rules
- •Common typemap methods
- •Writing typemap code
- •Scope
- •Creating local variables
- •Special variables
- •Typemaps for handling arrays
- •Typemaps and the SWIG Library
- •Implementing constraints with typemaps
- •Typemap examples
- •How to break everything with a typemap
- •Typemaps and the future
- •Exception Handling
- •The %except directive
- •Handling exceptions in C code
- •Exception handling with longjmp()
- •Handling C++ exceptions
- •Using The SWIG exception library
- •Debugging and other interesting uses for %except
- •More Examples
- •SWIG and Perl5
- •Preliminaries
- •Running SWIG
- •Compiling a dynamic module
- •Building a dynamic module with MakeMaker
- •Building a static version of Perl
- •Compilation problems and compiling with C++
- •Building Perl Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •Modules, packages, and classes
- •Basic Perl interface
- •Functions
- •Global variables
- •Constants
- •Pointers
- •Structures and C++ classes
- •A simple Perl example
- •Graphs
- •Sample Perl Script
- •Accessing arrays and other strange objects
- •Implementing methods in Perl
- •Shadow classes
- •Getting serious
- •Wrapping C libraries and other packages
- •Building a Perl5 interface to MATLAB
- •The MATLAB engine interface
- •Wrapping the MATLAB matrix functions
- •Putting it all together
- •Graphical Web-Statistics in Perl5
- •Handling output values (the easy way)
- •Exception handling
- •Remapping datatypes with typemaps
- •A simple typemap example
- •Perl5 typemaps
- •Typemap variables
- •Name based type conversion
- •Converting a Perl5 array to a char **
- •Using typemaps to return values
- •Accessing array structure members
- •Turning Perl references into C pointers
- •Useful functions
- •Standard typemaps
- •Pointer handling
- •Return values
- •The gory details on shadow classes
- •Module and package names
- •What gets created?
- •Object Ownership
- •Nested Objects
- •Shadow Functions
- •Inheritance
- •Iterators
- •Where to go from here?
- •SWIG and Python
- •Preliminaries
- •Running SWIG
- •Compiling a dynamic module
- •Using your module
- •Compilation problems and compiling with C++
- •Building Python Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •The low-level Python/C interface
- •Modules
- •Functions
- •Variable Linking
- •Constants
- •Pointers
- •Structures
- •C++ Classes
- •Python shadow classes
- •A simple example
- •Why write shadow classes in Python?
- •Automated shadow class generation
- •Compiling modules with shadow classes
- •Where to go for more information
- •About the Examples
- •Solving a simple heat-equation
- •The C++ code
- •Making a quick and dirty Python module
- •Using our new module
- •Accessing array data
- •Use Python for control, C for performance
- •Getting even more serious about array access
- •Implementing special Python methods in C
- •Summary (so far)
- •Wrapping a C library
- •Preparing a module
- •Using the gd module
- •Building a simple 2D imaging class
- •A mathematical function plotter
- •Plotting an unstructured mesh
- •From C to SWIG to Python
- •Putting it all together
- •Merging modules
- •Using dynamic loading
- •Use static linking
- •Building large multi-module systems
- •A complete application
- •Exception handling
- •Remapping C datatypes with typemaps
- •What is a typemap?
- •Python typemaps
- •Typemap variables
- •Name based type conversion
- •Converting Python list to a char **
- •Using typemaps to return arguments
- •Mapping Python tuples into small arrays
- •Accessing array structure members
- •Useful Functions
- •Standard typemaps
- •Pointer handling
- •Implementing C callback functions in Python
- •Other odds and ends
- •Adding native Python functions to a SWIG module
- •The gory details of shadow classes
- •A simple shadow class
- •Module names
- •Two classes
- •The this pointer
- •Object ownership
- •Constructors and Destructors
- •Member data
- •Printing
- •Shadow Functions
- •Nested objects
- •Inheritance and shadow classes
- •Methods that return new objects
- •Performance concerns and hints
- •SWIG and Tcl
- •Preliminaries
- •Running SWIG
- •Additional SWIG options
- •Compiling a dynamic module (Unix)
- •Using a dynamic module
- •Static linking
- •Compilation problems
- •Using [incr Tcl] namespaces
- •Building Tcl/Tk Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •Basic Tcl Interface
- •Functions
- •Global variables
- •Constants
- •Pointers
- •Structures
- •C++ Classes
- •The object oriented interface
- •Creating new objects
- •Invoking member functions
- •Deleting objects
- •Accessing member data
- •Changing member data
- •Relationship with pointers
- •About the examples
- •Binary trees in Tcl
- •Making a quick a dirty Tcl module
- •Building a C data structure in Tcl
- •Implementing methods in C
- •Building an object oriented C interface
- •Building C/C++ data structures with Tk
- •Accessing arrays
- •Building a simple OpenGL module
- •Wrapping gl.h
- •Wrapping glu.h
- •Wrapping the aux library
- •A few helper functions
- •An OpenGL package
- •Using the OpenGL module
- •Problems with the OpenGL interface
- •Exception handling
- •Typemaps
- •What is a typemap?
- •Tcl typemaps
- •Typemap variables
- •Name based type conversion
- •Converting a Tcl list to a char **
- •Remapping constants
- •Returning values in arguments
- •Mapping C structures into Tcl Lists
- •Useful functions
- •Standard typemaps
- •Pointer handling
- •Writing a main program and Tcl_AppInit()
- •Creating a new package initialization library
- •Combining Tcl/Tk Extensions
- •Limitations to this approach
- •Dynamic loading
- •Turning a SWIG module into a Tcl Package.
- •Building new kinds of Tcl interfaces (in Tcl)
- •Shadow classes
- •Extending the Tcl Netscape Plugin
- •Using the plugin
- •Tcl8.0 features
- •Advanced Topics
- •Creating multi-module packages
- •Runtime support (and potential problems)
- •Why doesn’t C++ inheritance work between modules?
- •The SWIG runtime library
- •A few dynamic loading gotchas
- •Dynamic Loading of C++ modules
- •Inside the SWIG type-checker
- •Type equivalence
- •Type casting
- •Why a name based approach?
- •Performance of the type-checker
- •Extending SWIG
- •Introduction
- •Prerequisites
- •SWIG Organization
- •The organization of this chapter
- •Compiling a SWIG extension
- •Required C++ compiler
- •Writing a main program
- •Compiling
- •SWIG output
- •The Language class (simple version)
- •A tour of SWIG datatypes
- •The DataType class
- •Function Parameters
- •The String Class
- •Hash Tables
- •The WrapperFunction class
- •Typemaps (from C)
- •The typemap C API.
- •What happens on typemap lookup?
- •How many typemaps are there?
- •File management
- •Naming Services
- •Code Generation Functions
- •Writing a Real Language Module
- •Command Line Options and Basic Initialization
- •Starting the parser
- •Emitting headers and support code
- •Setting a module name
- •Final Initialization
- •Cleanup
- •Creating Commands
- •Creating a Wrapper Function
- •Manipulating Global Variables
- •Constants
- •A Quick Intermission
- •Writing the default typemaps
- •The SWIG library and installation issues
- •C++ Processing
- •How C++ processing works
- •Language extensions
- •Hints
- •Documentation Processing
- •Documentation entries
- •Creating a usage string
- •Writing a new documentation module
- •Using a new documentation module
- •Where to go for more information
- •The Future of SWIG
- •Index
SWIG Users Guide |
Multiple files and the SWIG library |
70 |
|
|
|
You can override the location of the SWIG library by setting the SWIG_LIB environment variable.
Library example
The SWIG library is really a repository of “useful modules” that can be used to build better interfaces. To use a library file, you can simply use the %include directive with the name of a library file. For example :
%module example
%include pointer.i |
// Grab the SWIG pointer library |
// a+b --> c
extern double add(double a, double b, double *c);
In this example, we are including the SWIG pointer library that adds functions for manipulating C pointers. These added functions become part of your module that can be used as needed. For example, we can write a Tcl script like this that involves both the add() function and two functions from the pointer.i library :
set |
c |
[ptrcreate double 0] |
;# Create a double * for holding the result |
add |
4 |
3.5 $c |
;# Call our C function |
puts [ptrvalue $c] |
;# Print out the result |
||
Creating Library Files
It is easy to create your own library files. To illustrate the process, we consider two different library files--one to build a new tclsh program, and one to add a few memory management functions.
tclsh.i
To build a new tclsh application, you need to supply a Tcl_AppInit() function. This can be done using the following SWIG interface file (simplified somewhat for clarity) :
// File : tclsh.i %{
#if TCL_MAJOR_VERSION == 7 && TCL_MINOR_VERSION >= 4 int main(int argc, char **argv) {
Tcl_Main(argc, argv, Tcl_AppInit); return(0);
}
#else
extern int main(); #endif
int Tcl_AppInit(Tcl_Interp *interp){ int SWIG_init(Tcl_Interp *);
if (Tcl_Init(interp) == TCL_ERROR) return TCL_ERROR;
/* Now initialize our functions */
Version 1.1, June 24, 1997
SWIG Users Guide |
Multiple files and the SWIG library |
71 |
|
|
|
if (SWIG_init(interp) == TCL_ERROR) return TCL_ERROR;
return TCL_OK;
}
%}
In this case, the entire file consists of a single code block. This code will be inserted directly into the resulting wrapper file, providing us with the needed Tcl_AppInit() function.
malloc.i
Now suppose we wanted to write a file malloc.i that added a few memory management functions. We could do the following :
// File : malloc.i %{
#include <malloc.h> %}
%typedef unsigned int size_t void *malloc(size_t nbytes);
void *realloc(void *ptr, size_t nbytes); void free(void *);
In this case, we have a general purpose library that could be used whenever we needed access to the malloc() functions. Since this interface file is language independent, we can use it anywhere.
Placing the files in the library
While both of our examples are SWIG interface files, they are quite different in functionality since tclsh.i would only work with Tcl while malloc.i would work with any of the target languages. Thus, we should put these files into the SWIG library as follows :
./swig_lib/malloc.i
./swig_lib/tcl/tclsh.i
When used in other interface files, this allows us to use malloc.i with any target language while tclsh.i will only be accessible if creating for wrappers for Tcl (ie. when creating a Perl5 module, SWIG will not look in the tcl subdirectory.
It should be noted that language specific libraries can mask general libraries. For example, if you wanted to make a Perl specific modification to malloc.i, you could make a special version and call it ./swig_lib/perl5/malloc.i. When using Perl, you’d get this version, while all other target languages would use the general purpose version.
Working with library files
There are a variety of additional methods for working with files in the SWIG library described next.
Version 1.1, June 24, 1997
SWIG Users Guide |
Multiple files and the SWIG library |
72 |
|
|
|
Wrapping a library file
If you would like to wrap a file in the SWIG library, simply give SWIG the name of the appropriate library file on the command line. For example :
unix > swig -python pointer.i
If the file pointer.i is not in the current directory, SWIG will look it up in the library, generate wrapper code, and place the output in the current directory. This technique can be used to quickly make a module out of a library file regardless of where you are working.
Checking out library files
At times, it is useful to check a file out of the library and copy it into the working directory. This allows you to modify the file or to simply retrieve useful files. To check a file out of the library, run SWIG as follows :
unix > swig -co -python array.i
array.i checked out from the SWIG library unix >
The library file will be placed in the current directory unless a file with the same name already exists (in which case nothing is done).
The SWIG library is not restricted to interface files. Suppose you had a cool Perl script that you liked to use alot. You could place this in the SWIG library. Now whenever you wanted to use it, you could retrieve it by issuing :
unix > swig -perl5 -co myscript.pl myscript.pl checked out from the SWIG library
Support files can also be checked out within an interface file using the %checkout directive.
%checkout myscript.pl
This will attempt to copy the file myscript.pl to the current directory when SWIG is run. If the file already exists, nothing is done.
The world’s fastest way to write a Makefile
Since the SWIG library is not restricted to SWIG interface files, it can be used to hold other kinds of useful files. For example, if you need a quick Makefile for building Tcl extensions, type the following:
unix> swig -tcl -co Makefile
Makefile checked out from the SWIG library
During installation, SWIG creates a collection of preconfigured Makefiles for various scripting languages. If you need to make a new module, just check out one of these Makefiles, make a few changes, and you should be ready to compile and extension for your system.
Checking in library files
It is also possible to check files into the SWIG library. If you’ve made an interesting interface that
Version 1.1, June 24, 1997
