- •Preface
- •Introduction
- •SWIG resources
- •About this manual
- •Prerequisites
- •Organization of this manual
- •How to avoid reading the manual
- •Credits
- •What’s new?
- •Bug reports
- •SWIG is free
- •Introduction
- •What is SWIG?
- •Life before SWIG
- •Life after SWIG
- •The SWIG package
- •A SWIG example
- •The swig command
- •Building a Perl5 module
- •Building a Python module
- •Shortcuts
- •Documentation generation
- •Building libraries and modules
- •C syntax, but not a C compiler
- •Non-intrusive interface building
- •Hands off code generation
- •Event driven C programming
- •Automatic documentation generation
- •Summary
- •SWIG for Windows and Macintosh
- •SWIG on Windows 95/NT
- •SWIG on the Power Macintosh
- •Cross platform woes
- •How to survive this manual
- •Scripting Languages
- •The two language view of the world
- •How does a scripting language talk to C?
- •Wrapper functions
- •Variable linking
- •Constants
- •Structures and classes
- •Shadow classes
- •Building scripting language extensions
- •Static linking
- •Shared libraries and dynamic loading
- •Linking with shared libraries
- •SWIG Basics
- •Running SWIG
- •Input format
- •SWIG Output
- •Comments
- •C Preprocessor directives
- •SWIG Directives
- •Simple C functions, variables, and constants
- •Integers
- •Floating Point
- •Character Strings
- •Variables
- •Constants
- •Pointers and complex objects
- •Simple pointers
- •Run time pointer type checking
- •Derived types, structs, and classes
- •Typedef
- •Getting down to business
- •Passing complex datatypes by value
- •Return by value
- •Linking to complex variables
- •Arrays
- •Creating read-only variables
- •Renaming declarations
- •Overriding call by reference
- •Default/optional arguments
- •Pointers to functions
- •Typedef and structures
- •Character strings and structures
- •Array members
- •C constructors and destructors
- •Adding member functions to C structures
- •Nested structures
- •Other things to note about structures
- •C++ support
- •Supported C++ features
- •C++ example
- •Constructors and destructors
- •Member functions
- •Static members
- •Member data
- •Protection
- •Enums and constants
- •References
- •Inheritance
- •Templates
- •Renaming
- •Adding new methods
- •SWIG, C++, and the Legislation of Morality
- •The future of C++ and SWIG
- •Objective-C
- •Objective-C Example
- •Constructors and destructors
- •Instance methods
- •Class methods
- •Member data
- •Protection
- •Inheritance
- •Referring to other classes
- •Categories
- •Implementations and Protocols
- •Renaming
- •Adding new methods
- •Other issues
- •Conditional compilation
- •The #if directive
- •Code Insertion
- •The output of SWIG
- •Code blocks
- •Inlined code blocks
- •Initialization blocks
- •Wrapper code blocks
- •A general interface building strategy
- •Preparing a C program for SWIG
- •What to do with main()
- •Working with the C preprocessor
- •How to cope with C++
- •How to avoid creating the interface from hell
- •Multiple files and the SWIG library
- •The %include directive
- •The %extern directive
- •The %import directive
- •The SWIG library
- •Library example
- •Creating Library Files
- •tclsh.i
- •malloc.i
- •Static initialization of multiple modules
- •More about the SWIG library
- •Documentation System
- •Introduction
- •How it works
- •Choosing a documentation format
- •Function usage and argument names
- •Titles, sections, and subsections
- •Formatting
- •Default Formatting
- •Comment Formatting variables
- •Sorting
- •Comment placement and formatting
- •Tabs and other annoyances
- •Ignoring comments
- •C Information
- •Adding Additional Text
- •Disabling all documentation
- •An Example
- •ASCII Documentation
- •HTML Documentation
- •LaTeX Documentation
- •C++ Support
- •The Final Word?
- •Pointers, Constraints, and Typemaps
- •Introduction
- •The SWIG Pointer Library
- •Pointer Library Functions
- •A simple example
- •Creating arrays
- •Packing a data structure
- •Introduction to typemaps
- •The idea (in a nutshell)
- •Using some typemaps
- •Managing input and output parameters
- •Input Methods
- •Output Methods
- •Input/Output Methods
- •Using different names
- •Applying constraints to input values
- •Simple constraint example
- •Constraint methods
- •Applying constraints to new datatypes
- •Writing new typemaps
- •Motivations for using typemaps
- •Managing special data-types with helper functions
- •A Typemap Implementation
- •What is a typemap?
- •Creating a new typemap
- •Deleting a typemap
- •Copying a typemap
- •Typemap matching rules
- •Common typemap methods
- •Writing typemap code
- •Scope
- •Creating local variables
- •Special variables
- •Typemaps for handling arrays
- •Typemaps and the SWIG Library
- •Implementing constraints with typemaps
- •Typemap examples
- •How to break everything with a typemap
- •Typemaps and the future
- •Exception Handling
- •The %except directive
- •Handling exceptions in C code
- •Exception handling with longjmp()
- •Handling C++ exceptions
- •Using The SWIG exception library
- •Debugging and other interesting uses for %except
- •More Examples
- •SWIG and Perl5
- •Preliminaries
- •Running SWIG
- •Compiling a dynamic module
- •Building a dynamic module with MakeMaker
- •Building a static version of Perl
- •Compilation problems and compiling with C++
- •Building Perl Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •Modules, packages, and classes
- •Basic Perl interface
- •Functions
- •Global variables
- •Constants
- •Pointers
- •Structures and C++ classes
- •A simple Perl example
- •Graphs
- •Sample Perl Script
- •Accessing arrays and other strange objects
- •Implementing methods in Perl
- •Shadow classes
- •Getting serious
- •Wrapping C libraries and other packages
- •Building a Perl5 interface to MATLAB
- •The MATLAB engine interface
- •Wrapping the MATLAB matrix functions
- •Putting it all together
- •Graphical Web-Statistics in Perl5
- •Handling output values (the easy way)
- •Exception handling
- •Remapping datatypes with typemaps
- •A simple typemap example
- •Perl5 typemaps
- •Typemap variables
- •Name based type conversion
- •Converting a Perl5 array to a char **
- •Using typemaps to return values
- •Accessing array structure members
- •Turning Perl references into C pointers
- •Useful functions
- •Standard typemaps
- •Pointer handling
- •Return values
- •The gory details on shadow classes
- •Module and package names
- •What gets created?
- •Object Ownership
- •Nested Objects
- •Shadow Functions
- •Inheritance
- •Iterators
- •Where to go from here?
- •SWIG and Python
- •Preliminaries
- •Running SWIG
- •Compiling a dynamic module
- •Using your module
- •Compilation problems and compiling with C++
- •Building Python Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •The low-level Python/C interface
- •Modules
- •Functions
- •Variable Linking
- •Constants
- •Pointers
- •Structures
- •C++ Classes
- •Python shadow classes
- •A simple example
- •Why write shadow classes in Python?
- •Automated shadow class generation
- •Compiling modules with shadow classes
- •Where to go for more information
- •About the Examples
- •Solving a simple heat-equation
- •The C++ code
- •Making a quick and dirty Python module
- •Using our new module
- •Accessing array data
- •Use Python for control, C for performance
- •Getting even more serious about array access
- •Implementing special Python methods in C
- •Summary (so far)
- •Wrapping a C library
- •Preparing a module
- •Using the gd module
- •Building a simple 2D imaging class
- •A mathematical function plotter
- •Plotting an unstructured mesh
- •From C to SWIG to Python
- •Putting it all together
- •Merging modules
- •Using dynamic loading
- •Use static linking
- •Building large multi-module systems
- •A complete application
- •Exception handling
- •Remapping C datatypes with typemaps
- •What is a typemap?
- •Python typemaps
- •Typemap variables
- •Name based type conversion
- •Converting Python list to a char **
- •Using typemaps to return arguments
- •Mapping Python tuples into small arrays
- •Accessing array structure members
- •Useful Functions
- •Standard typemaps
- •Pointer handling
- •Implementing C callback functions in Python
- •Other odds and ends
- •Adding native Python functions to a SWIG module
- •The gory details of shadow classes
- •A simple shadow class
- •Module names
- •Two classes
- •The this pointer
- •Object ownership
- •Constructors and Destructors
- •Member data
- •Printing
- •Shadow Functions
- •Nested objects
- •Inheritance and shadow classes
- •Methods that return new objects
- •Performance concerns and hints
- •SWIG and Tcl
- •Preliminaries
- •Running SWIG
- •Additional SWIG options
- •Compiling a dynamic module (Unix)
- •Using a dynamic module
- •Static linking
- •Compilation problems
- •Using [incr Tcl] namespaces
- •Building Tcl/Tk Extensions under Windows 95/NT
- •Running SWIG from Developer Studio
- •Using NMAKE
- •Basic Tcl Interface
- •Functions
- •Global variables
- •Constants
- •Pointers
- •Structures
- •C++ Classes
- •The object oriented interface
- •Creating new objects
- •Invoking member functions
- •Deleting objects
- •Accessing member data
- •Changing member data
- •Relationship with pointers
- •About the examples
- •Binary trees in Tcl
- •Making a quick a dirty Tcl module
- •Building a C data structure in Tcl
- •Implementing methods in C
- •Building an object oriented C interface
- •Building C/C++ data structures with Tk
- •Accessing arrays
- •Building a simple OpenGL module
- •Wrapping gl.h
- •Wrapping glu.h
- •Wrapping the aux library
- •A few helper functions
- •An OpenGL package
- •Using the OpenGL module
- •Problems with the OpenGL interface
- •Exception handling
- •Typemaps
- •What is a typemap?
- •Tcl typemaps
- •Typemap variables
- •Name based type conversion
- •Converting a Tcl list to a char **
- •Remapping constants
- •Returning values in arguments
- •Mapping C structures into Tcl Lists
- •Useful functions
- •Standard typemaps
- •Pointer handling
- •Writing a main program and Tcl_AppInit()
- •Creating a new package initialization library
- •Combining Tcl/Tk Extensions
- •Limitations to this approach
- •Dynamic loading
- •Turning a SWIG module into a Tcl Package.
- •Building new kinds of Tcl interfaces (in Tcl)
- •Shadow classes
- •Extending the Tcl Netscape Plugin
- •Using the plugin
- •Tcl8.0 features
- •Advanced Topics
- •Creating multi-module packages
- •Runtime support (and potential problems)
- •Why doesn’t C++ inheritance work between modules?
- •The SWIG runtime library
- •A few dynamic loading gotchas
- •Dynamic Loading of C++ modules
- •Inside the SWIG type-checker
- •Type equivalence
- •Type casting
- •Why a name based approach?
- •Performance of the type-checker
- •Extending SWIG
- •Introduction
- •Prerequisites
- •SWIG Organization
- •The organization of this chapter
- •Compiling a SWIG extension
- •Required C++ compiler
- •Writing a main program
- •Compiling
- •SWIG output
- •The Language class (simple version)
- •A tour of SWIG datatypes
- •The DataType class
- •Function Parameters
- •The String Class
- •Hash Tables
- •The WrapperFunction class
- •Typemaps (from C)
- •The typemap C API.
- •What happens on typemap lookup?
- •How many typemaps are there?
- •File management
- •Naming Services
- •Code Generation Functions
- •Writing a Real Language Module
- •Command Line Options and Basic Initialization
- •Starting the parser
- •Emitting headers and support code
- •Setting a module name
- •Final Initialization
- •Cleanup
- •Creating Commands
- •Creating a Wrapper Function
- •Manipulating Global Variables
- •Constants
- •A Quick Intermission
- •Writing the default typemaps
- •The SWIG library and installation issues
- •C++ Processing
- •How C++ processing works
- •Language extensions
- •Hints
- •Documentation Processing
- •Documentation entries
- •Creating a usage string
- •Writing a new documentation module
- •Using a new documentation module
- •Where to go for more information
- •The Future of SWIG
- •Index
SWIG Users Guide |
Extending SWIG |
304 |
|
|
|
with the name you assigned to the LibDir variable in parse_args().
•Copy the file ‘lang.map’ to the SWIG library directory. Your new version of SWIG will now be able to find it no matter what directory SWIG is executed from.
•Provide some documentation about how your module works.
SWIG extensions are only able to target a single scripting language. If you would like to make your module part of the full version of SWIG, you will need to modify the file ‘swigmain.cxx’ in the SWIG1.1/Modules directory. To do this, follow these steps :
•Add a #include “lang.h” to the swigmain.cxx file.
•Create a command line option for your module and write code to create an instance of your language (just copy the technique used for the other languages).
•Modify Modules/Makefile to include your module as part of its compilation process.
•Rebuild SWIG by typing ‘make’.
C++ Processing
Language modules have the option to provide special processing for C++ classes. Usually this is to provide some sort of object-oriented interface such as shadow classes. The process of developing these extensions is highly technical and the best approach may be to copy pieces from other SWIG modules that provide object oriented support.
How C++ processing works
The wrapping of C++ classes follows a “file” metaphor. When a class is encountered, the following steps are performed :
•Open a new class.
•Inherit from base classes.
•Add members to the class (functions, variables, constants, etc...)
•Close the class and emit object-oriented code.
As a class is constructed, a language module may need to keep track of a variety of data such as whether constructors or destructors have been given, are there any data members, have datatypes been renamed, and so on. It is not always a clear-cut process.
Language extensions
Providing additional support for object-oriented programming requires the use of the following Language extensions. These are additional methods that can be defined for the Language class.
void cpp_open_class(char *name, char *rename, char *ctype, int strip);
Opens a new class. name is the name of the class, rename is the renamed version of the class (or NULL if not renamed), ctype is the class type (struct, class, union), and strip is a flag indicating whether or not its safe to drop the leading type specifier (this is often unsafe for ANSI C).
void cpp_inherit(char **baseclass, int mode = INHERIT_ALL);
Inherits from base classes. baseclass is a NULL terminated array of class names corresponding to all of the base classes of an object. mode is an inheritance mode that is the
Version 1.1, June 24, 1997
SWIG Users Guide |
Extending SWIG |
305 |
|
|
|
or’d value of INHERIT_FUNC , INHERIT_VAR, INHERIT_CONST, or INHERIT_ALL.
void cpp_member_func(char *name, char *iname, DataType *t, ParmList *l);
Creates a member function. name is the real name of the member, iname is the renamed version (NULL if not renamed), t is the return datatype, and l is the function parameter list.
void cpp_static_func(char *name, char *iname, DataType *t, ParmList *l);
Create a static member function. The calling conventions are the same as for cpp_member_func().
void cpp_variable(char *name, char *iname, DataType *t);
Creates a member variable. name is the real name of the member, iname is the renamed version (NULL is not renamed). t is the type of the member.
void cpp_static_var(char *name, char *iname, DataType *t);
Creates a static member variable. The calling convention is the same as for cpp_variable().
void cpp_declare_const(char *name, char *iname, DataType *type, char *value);
Creates a constant inside a C++ class. Normally this is an enum or member declared as const. name is the real name, iname is the renamed version (NULL if not renamed), type is the type of the constant, and value is a string containing the value.
void cpp_constructor(char *name, char *iname, ParmList *l);
Creates a constructor. name is the name of the constructor, iname is the renamed version, and l is the function parameter list. Normally, name is the same name as the class. If not, this may actually be a member function with no declared return type (assumed to be an int in C++).
void cpp_destructor(char *name, char *newname);
Creates a destructor. name is the real name of the destructor (usually the same name as the class), and newname is the renamed version (NULL if not renamed).
void cpp_close_class();
Closes the current class. Language modules should finish off code generation for a class once this has been called.
void cpp_cleanup();
Called after all C++ classes have been generated. Only used to provide some kind of global cleanup for all classes.
Hints
Special C++ code generation is not for the weak of heart. Most of SWIG’s built in modules have been developed for well over a year and object oriented support has been in continual development. If writing a new language module, looking at the implementation for Python, Tcl, or Perl5
Version 1.1, June 24, 1997
