
- •Лекция № 1 Введение
- •1. Статика
- •1.1. Основные понятия статики
- •1.1.1. Момент силы Алгебраический момент силы относительно точки
- •Векторный момент силы относительно точки
- •Момент силы относительно оси
- •1.1.2. Пара сил Пара сил и алгебраический момент пары сил
- •1.2. Аксиомы статики
- •Лекция № 2
- •1.3. Простейшие теоремы статики
- •1.4. Приведение системы сил к простейшей системе. Условия равновесия
- •Равновесие пар сил
- •Условия равновесия произвольной системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы сходящихся сил
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •1.5. Центр тяжести твердого тела Центр параллельных сил
- •Способы нахождения центра тяжести
- •1.6. Распределенные силы
- •1.7. Трение Трение скольжения
- •Трение качения
- •1.8. Решение задач статики
- •Лекция № 3
- •2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Скорость и ускорение точки
- •2.1.2. Векторный способ задания движения точки
- •2.1.3. Координатный способ задания движения точки
- •2.1.4. Естественный способ задания движения точки
- •Частные случаи движения точки
- •Лекция № 4
- •2.2. Кинематика твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела при вращении вокруг неподвижной оси
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.3. Сложное движение точки
- •Ускорение Кориолиса
- •Лекция № 5
- •2.4. Плоское (плоскопараллельное) движение твердого тела
- •2.4.1. Скорости точек плоской фигуры
- •2.4.2. Мгновенный центр скоростей
- •2.4.3. Ускорения точек плоской фигуры
- •2.4.4. Мгновенный центр ускорений
- •2.5. Решение задач кинематики
- •Лекция № 6
- •3. Динамика
- •3.1. Аксиомы динамики
- •3.2. Динамика материальной точки
- •3.2.1. Дифференциальные уравнения движения материальной точки
- •3.2.2. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •3.2.3. Дифференциальные уравнения относительного движения материальной точки
- •3.3. Геометрия масс
- •3.3.1. Центр масс
- •3.3.2. Моменты инерции Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3.3. Теорема Штейнера
- •3.3.4. Моменты инерции однородных тел
- •3.4.1. Теорема о движении центра масс
- •3.4.2. Теорема об изменении количества движения Количество движения точки и системы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •3.4.3. Теорема об изменении кинетического момента
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Лекция № 8
- •3.4.4. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •3.5. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •Лекция № 9
- •3.6. Элементы аналитической механики
- •3.6.1. Классификация механических связей
- •3.6.2. Возможные перемещения
- •3.6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •3.6.4. Принцип возможных перемещений
- •3.6.5. Обобщенные координаты системы
- •3.6.6. Обобщенные силы
- •Вычисление обобщенной силы
- •Условия равновесия системы сил в терминах обобщенных сил
- •3.6.7. Общее уравнение динамики
- •Лекция № 10
- •3.6.8. Уравнения Лагранжа второго рода
- •3.7. Решение задач динамики
- •Контрольные Вопросы
- •Заключение
- •Библиографический список
- •Оглавление Лекция № 1
- •Лекция № 3
- •Лекция № 4
- •Лекция № 5
- •Лекция № 6
- •Лекция № 7
1.7. Трение Трение скольжения
При движении или стремлении двигать одно тело по поверхности другого в касательной плоскости поверхностей соприкосновения возникает сила трения скольжения (трение первого рода).
Пусть на тело действует плоская система активных сил и тело находится в равновесии, соприкасаясь с шероховатой поверхностью другого тела (рис. 16).
Сила
реакции
шероховатой поверхности будет складываться
из нормального давления
,
направленного по общей нормали к
поверхности соприкосновения, и силы
трения скольжения
при покое.
Для силы трения скольжения справедливы законы Кулона:
С
Рис. 16
ила трения скольжения находится в общей касательной плоскости соприкасающихся поверхностей тел и направлена в сторону, противоположную направлению возможного или реального скольжения тела под действием приложенных сил. Сила трения при покое зависит от активных сил и ее модуль заключен между нулем и максимальным значением, которое достигается в момент выхода тела из положения равновесия, т.е.
.
Максимальная сила трения скольжения при прочих равных условиях не зависит от площади соприкосновения трущихся поверхностей. Из этого закона следует, что для того, чтобы сдвинуть, например, кирпич, надо приложить одну и ту же силу независимо от того, какой гранью он положен на поверхность, широкой или узкой.
Максимальная сила трения скольжения пропорциональна нормальному давлению (нормальной реакции), т. е.
, (30)
где безразмерный
коэффициент
называют коэффициентом трения скольжения;
он не зависит от нормального давления.
Коэффициент трения скольжения зависит от материала и физического состояния трущихся поверхностей, т.е. от величины и характера шероховатости, влажности, температуры и других условий. Коэффициент трения скольжения в зависимости от различных условий устанавливается экспериментально.
Трение качения
Если одно тело, например цилиндрический каток, катить или стремиться катить по поверхности другого тела, то кроме силы трения скольжения из-за деформации поверхностей тел дополнительно возникает пара сил, препятствующая качению катка. Явление возникновения пары сил, препятствующей качению, называют трением качения или трением второго рода.
А
Рис. 17ктивные
силы, действующие на катки в виде колес
(рис. 17), кроме силы тяжести
обычно состоят из силы
,
приложенной к центру колеса параллельно
общей касательной в точке
,
и пары сил с моментом
,
стремящейся катить колесо, называемое
в этом случаеведомо-ведущим.
Если
,
а
,
то колесо называютведомым;
если
,
а
,
товедущим.
Ведомо-ведущими являются колеса
локомотива, идущего вторым в составе
поезда.
Приведем
активные силы в общем случае к точке
.
В этой точке получим главный вектор
этих сил
и пару сил, момент которой равен главному
моменту
(рис. 18).
П
Рис. 18
;
.
Изменив
активные силы, приложенные к катку так,
чтобы увеличивался момент
пары активных сил, стремящейся катить
каток. Пока каток находится в равновесии,
увеличивается и равный ему по числовой
величине, но противоположный по
направлению момент
пары сил, препятствующий качению катка
и возникающий от действия на каток
неподвижной плоскости. Наибольшее
значение
достигается в момент начала качения
катка по плоскости.
Установлены следующие приближенные законы для наибольшего момента пары сил, препятствующей качению:
Наибольший момент пары сил, препятствующей качению, в довольно широких пределах не зависит от радиуса катка.
Предельное значение момента
пропорционально нормальному давлению, а следовательно, и равной ему нормальной реакции
:
. (31)
Коэффициент
пропорциональности
называют,коэффициентом
трения качения
при покое или коэффициентом
трения второго рода.
Из формулы (31) следует, что
имеет размерность длины.
Коэффициент трения качения
зависит от материала катка, плоскости и физического состояния их поверхностей. Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.