Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekcii_Teoreticheskaja_mekhanika / Лекции Теоретическая механика.doc
Скачиваний:
411
Добавлен:
31.05.2015
Размер:
5.31 Mб
Скачать

Теорема об изменении кинетического момента точки

Первая производная по времени от кинетического момента точки относительно какого-либо центра равна моменту силы относительно того же центра:

. (171)

Проецируя (171) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента точки относительно этих осей координат:

, ,. (171')

Теорема об изменении кинетического момента системы

Первая производная по времени от кинетического момента системы относительно какой-либо точки равна векторной сумме моментов внешних сил, действующих на систему, относительно той же точки.

, (172)

где – главный момент всех внешних сил системы.

Проецируя (172) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента системы относительно этих осей координат, т. е.

, ,. (172')

Законы сохранения кинетических моментов

1. Если главный момент внешних сил системы относительно точки равен нулю, т. е., то, согласно (79), кинетический момент системыотносительно той же точки постоянен по модулю и направлению, т. е.

. (173)

Этот частный случай теоремы об изменении кинетического момента системы называют законом сохранения кинетического момента. В проекциях на прямоугольные декартовы оси координат по этому закону

, ,,

где ,,– постоянные величины.

2. Если сумма моментов всех внешних сил системы относительно оси равна нулю, т.е., то из (172') следует, что

. (174)

Следовательно, кинетический момент системы относительно какой-либо координатной оси постоянен, если сумма моментов внешних сил относительно этой оси равна нулю, что, в частности, наблюдается, когда внешние силы параллельны оси или пересекают ее. В частном случае для тела или системы тел, которые все вместе могут вращаться вокруг неподвижной оси, и если при этом

,

то

, или , (175)

где и– момент инерции системы тел и их угловая скорость относительно оси вращения в произвольный момент времени;и– момент инерции тел и их угловая скорость в момент времени, выбранный за начальный.

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Из теоремы об изменении кинетического момента (172') следует дифференциальное уравнение вращения твердого тела вокруг неподвижной оси :

, (176)

где – угол поворота тела.

Дифференциальное уравнение вращательного движения твердого тела в общем случае позволяет решать две основные задачи: по заданному вращению тела определять вращающий момент внешних сил и по заданному вращательному моменту и начальным условиям находить вращение тела. При решении второй задачи для нахождения угла поворота приходится интегрировать дифференциальное уравнение вращательного движения. Методы его интегрирования полностью аналогичны рассмотренным методам интегрирования дифференциального уравнения прямолинейного движения точки.

Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс

Пусть механическая система совершает движение относительно основной системы координат . Возьмем подвижную систему координатс началом в центре масс системы, движущуюся поступательно относительно основной системы координат. Можно доказать справедливость формулы:

, (177)

где – абсолютная скорость центра масс,.

Величина является кинетическим моментом системы относительно центра масс для относительного движения относительно системы координат, движущейся поступательно вместе с центром масс, т. е. системы.

Формула (176) показывает, что кинетический момент абсолютного движения системы относительно неподвижной точки равен векторной сумме кинетического момента центра масс относительно той же точки, если бы в центре масс была сосредоточена вся масса системы, и кинетического момента системы относительно центра масс для относительного движение системы по отношению к подвижной системе координат, движущейся поступательно вместе с центром масс.

Теорема об изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс; она формулируется так же, как если бы центр масс был неподвижной точкой:

или , (178)

где является главным моментом всех внешних сил относительно центра масс.