
- •Лекция № 1 Введение
- •1. Статика
- •1.1. Основные понятия статики
- •1.1.1. Момент силы Алгебраический момент силы относительно точки
- •Векторный момент силы относительно точки
- •Момент силы относительно оси
- •1.1.2. Пара сил Пара сил и алгебраический момент пары сил
- •1.2. Аксиомы статики
- •Лекция № 2
- •1.3. Простейшие теоремы статики
- •1.4. Приведение системы сил к простейшей системе. Условия равновесия
- •Равновесие пар сил
- •Условия равновесия произвольной системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы сходящихся сил
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •1.5. Центр тяжести твердого тела Центр параллельных сил
- •Способы нахождения центра тяжести
- •1.6. Распределенные силы
- •1.7. Трение Трение скольжения
- •Трение качения
- •1.8. Решение задач статики
- •Лекция № 3
- •2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Скорость и ускорение точки
- •2.1.2. Векторный способ задания движения точки
- •2.1.3. Координатный способ задания движения точки
- •2.1.4. Естественный способ задания движения точки
- •Частные случаи движения точки
- •Лекция № 4
- •2.2. Кинематика твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела при вращении вокруг неподвижной оси
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.3. Сложное движение точки
- •Ускорение Кориолиса
- •Лекция № 5
- •2.4. Плоское (плоскопараллельное) движение твердого тела
- •2.4.1. Скорости точек плоской фигуры
- •2.4.2. Мгновенный центр скоростей
- •2.4.3. Ускорения точек плоской фигуры
- •2.4.4. Мгновенный центр ускорений
- •2.5. Решение задач кинематики
- •Лекция № 6
- •3. Динамика
- •3.1. Аксиомы динамики
- •3.2. Динамика материальной точки
- •3.2.1. Дифференциальные уравнения движения материальной точки
- •3.2.2. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •3.2.3. Дифференциальные уравнения относительного движения материальной точки
- •3.3. Геометрия масс
- •3.3.1. Центр масс
- •3.3.2. Моменты инерции Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3.3. Теорема Штейнера
- •3.3.4. Моменты инерции однородных тел
- •3.4.1. Теорема о движении центра масс
- •3.4.2. Теорема об изменении количества движения Количество движения точки и системы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •3.4.3. Теорема об изменении кинетического момента
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Лекция № 8
- •3.4.4. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •3.5. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •Лекция № 9
- •3.6. Элементы аналитической механики
- •3.6.1. Классификация механических связей
- •3.6.2. Возможные перемещения
- •3.6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •3.6.4. Принцип возможных перемещений
- •3.6.5. Обобщенные координаты системы
- •3.6.6. Обобщенные силы
- •Вычисление обобщенной силы
- •Условия равновесия системы сил в терминах обобщенных сил
- •3.6.7. Общее уравнение динамики
- •Лекция № 10
- •3.6.8. Уравнения Лагранжа второго рода
- •3.7. Решение задач динамики
- •Контрольные Вопросы
- •Заключение
- •Библиографический список
- •Оглавление Лекция № 1
- •Лекция № 3
- •Лекция № 4
- •Лекция № 5
- •Лекция № 6
- •Лекция № 7
Дифференциальные уравнения плоского движения твердого тела
Для твердого тела, совершающего плоское движение и, следовательно, имеющего три степени свободы, соответственно получим следующие три дифференциальных уравнения:
,
,
.
(179)
С помощью этих уравнений можно решать две основные задачи: по заданному плоскому движению твердого тела находить действующие на тело внешние силы и по заданным внешним силам и начальным условиям определять его движение. При решении этих задач должны быть заданы масса тела и его момент инерции.
Лекция № 8
3.4.4. Теорема об изменении кинетической энергии Работа силы
Работа силы на каком-либо перемещении является одной из основных характеристик, оценивающих действие силы на этом перемещении.
Элементарная
работа силы.
Элементарная работа
силы
на элементарном (бесконечно малом)
перемещении
определяется следующим образом (рис.
54):
, (180)
где
– проекция силы
на направление скорости точки приложения
силы или на направление элементарного
перемещения, которое считается
направленным по скорости точки.
Элементарную работу можно представить, в виде:
, (181)
элементарная
работа силы равна произведению
элементарного перемещения ни проекцию
силы на это перемещение.
Отметим частые случаи, которые можно
получить из (180):
,
;
Рис. 54
;
,
.
Таким образом, если сила перпендикулярна элементарному перемещению, то ее элементарная работа равна нулю. В частности, работа нормальной составляющей к скорости силы всегда равна нулю.
Приведем другие формулы для вычисления элементарной работы силы:
, (182)
элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы.
, (183)
элементарная работа равна скалярному произведению элементарного импульса силы на скорость точки.
Аналитическое выражение элементарной работы:
. (184)
Полная работа
силы.
Полная работа силы
на перемещении от точки
до точки
равна:
, (185)
Используя другие выражения для элементарной работы, полную работу силы можно представить также в виде
, (186)
или
, (187)
где момент времени
соответствует точке
,
а момент времени
– точке
.
Из определения элементарной и полной работы следует:
работа равнодействующей силы на каком-либо перемещении равна алгебраической сумме работ составляющих сил на том же перемещении;
работа силы на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.
Мощность. Мощность силы или работоспособность какого-либо источника силы часто оценивают той работой, которую он может совершить за единицу времени:
.
Учитывая определение для элементарной работы, мощность можно представить в виде
.
Таким образом, мощность равна скалярному произведению силы на скорость точки.
Примеры вычисления работы силы
Работа силы в общем случае зависит от характера движения точки приложения силы. Следовательно, для вычисления работы надо знать движение этой точки. Но в природе имеются силы и примеры движения, для которых работу можно вычислить сравнительно просто, зная начальное и конечное положение точки.
Работа силы
тяжести.
Силу
тяжести
материальной точки массой
вблизи поверхности Земли можно считать
постоянной, равной
,
направленной по вертикали вниз. Если
взять оси координат
,
где ось
направлена по вертикали вверх, то
,
(188)
где
– высота опускания точки.
При подъеме точки
высота
является отрицательной. Следовательно,
в общем случае работа силы тяжести
равна
. (189)
Если имеем систему
материальных точек, то для каждой точки
с массой
будем иметь работу ее силы тяжести
,
где
– начальная и конечная координаты
точки.
Работа всех сил тяжести системы материальных точек
,
(190)
где
– масса системы точек;
и
– начальная и конечная координаты
центра масс системы точек. Вводя
обозначение для изменения высоты центра
масс
,
имеем
. (190')
Работа линейной силы упругости. Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действующую по закону Гука:
,
где
– расстояние от точки равновесия, где
сила равна нулю, до рассматриваемой
точки
;
– постоянный коэффициент жесткости.
. (191)
По этой формуле
вычисляют работу линейной силы упругости
пружины при перемещении по любому пути
из точки
,
в которой ее удлинение (начальная
деформация) равно
,
в точку
,
где деформация соответственно равна
.
В новых обозначениях (191) принимает вид
. (191')
Работа силы, приложенной к твердому телу. Получим формулы для вычисления элементарной и полной работы силы, приложенной в какой-либо точке твердого тела, которое совершает то или иное движение. Сначала рассмотрим поступательное и вращательное движения тела, а затем общий случай движения твердого тела.
При поступательном
движении
твердого
тела все
точки тела имеют одинаковые по модулю
и направлению скорости. Следовательно,
если сила
приложена к точке
,
то, так как
,
, (192)
где
– радиус-вектор произвольной точки
твердого тела. На каком-либо перемещении
полная работа
. (193)
При вращении
твердого тела вокруг неподвижной оси
скорость точки
можно вычислить по векторной формуле
Эйлера:
,
тогда элементарную
работу силы
определим по формуле
. (194)
Таким образом, элементарная работа силы, приложенной к какой-либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.
Полная работа
. (195)
В частном случае,
если момент силы относительно оси
вращения является постоянным, т. е.
,
работу определяют по формуле
. (196)
Используя определение мощности силы
. (197)
Мощность силы, приложенной к вращающемуся вокруг неподвижной оси твердому телу, равна произведению угловой скорости тела на момент силы относительно оси вращения тела.
Для свободного
тела в общем
случае движения
скорость точки
,
в которой приложена сила
,
,
следовательно,
. (198)
Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, в общем случае движения складывается из элементарной работы на элементарном поступательном перемещении вместе с какой-либо точкой тела и на элементарном вращательном перемещении вокруг этой точки.
В случае вращения
твердого тела вокруг неподвижной точки,
выбрав эту точку за полюс
,
для элементарной работы имеем
. (199)
Поворот на угол
следует рассматривать в каждый момент
времени вокруг своей мгновенной оси
вращения.
Работа внутренних сил твердого тела. Для твердого тела сумма работ внутренних сил равна нулю при любом его перемещении.