- •Лекция № 1 Введение
- •1. Статика
- •1.1. Основные понятия статики
- •1.1.1. Момент силы Алгебраический момент силы относительно точки
- •Векторный момент силы относительно точки
- •Момент силы относительно оси
- •1.1.2. Пара сил Пара сил и алгебраический момент пары сил
- •1.2. Аксиомы статики
- •Лекция № 2
- •1.3. Простейшие теоремы статики
- •1.4. Приведение системы сил к простейшей системе. Условия равновесия
- •Равновесие пар сил
- •Условия равновесия произвольной системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы сходящихся сил
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •1.5. Центр тяжести твердого тела Центр параллельных сил
- •Способы нахождения центра тяжести
- •1.6. Распределенные силы
- •1.7. Трение Трение скольжения
- •Трение качения
- •1.8. Решение задач статики
- •Лекция № 3
- •2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Скорость и ускорение точки
- •2.1.2. Векторный способ задания движения точки
- •2.1.3. Координатный способ задания движения точки
- •2.1.4. Естественный способ задания движения точки
- •Частные случаи движения точки
- •Лекция № 4
- •2.2. Кинематика твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела при вращении вокруг неподвижной оси
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.3. Сложное движение точки
- •Ускорение Кориолиса
- •Лекция № 5
- •2.4. Плоское (плоскопараллельное) движение твердого тела
- •2.4.1. Скорости точек плоской фигуры
- •2.4.2. Мгновенный центр скоростей
- •2.4.3. Ускорения точек плоской фигуры
- •2.4.4. Мгновенный центр ускорений
- •2.5. Решение задач кинематики
- •Лекция № 6
- •3. Динамика
- •3.1. Аксиомы динамики
- •3.2. Динамика материальной точки
- •3.2.1. Дифференциальные уравнения движения материальной точки
- •3.2.2. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •3.2.3. Дифференциальные уравнения относительного движения материальной точки
- •3.3. Геометрия масс
- •3.3.1. Центр масс
- •3.3.2. Моменты инерции Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3.3. Теорема Штейнера
- •3.3.4. Моменты инерции однородных тел
- •3.4.1. Теорема о движении центра масс
- •3.4.2. Теорема об изменении количества движения Количество движения точки и системы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •3.4.3. Теорема об изменении кинетического момента
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Лекция № 8
- •3.4.4. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •3.5. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •Лекция № 9
- •3.6. Элементы аналитической механики
- •3.6.1. Классификация механических связей
- •3.6.2. Возможные перемещения
- •3.6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •3.6.4. Принцип возможных перемещений
- •3.6.5. Обобщенные координаты системы
- •3.6.6. Обобщенные силы
- •Вычисление обобщенной силы
- •Условия равновесия системы сил в терминах обобщенных сил
- •3.6.7. Общее уравнение динамики
- •Лекция № 10
- •3.6.8. Уравнения Лагранжа второго рода
- •3.7. Решение задач динамики
- •Контрольные Вопросы
- •Заключение
- •Библиографический список
- •Оглавление Лекция № 1
- •Лекция № 3
- •Лекция № 4
- •Лекция № 5
- •Лекция № 6
- •Лекция № 7
3.3.2. Моменты инерции Моменты инерции относительно точки и оси
Моментом инерции механической системы, состоящей изматериальных точек, относительно точкиназывается сумма произведений масс этих точек на квадраты их расстояний до точки(рис. 51), т. е.
. (139)
М
Рис. 51
, (139')
где – масса элементарной частицы тела (в пределе точка);– ее расстояние до точки.
Моментом инерции системы материальных точек относительно осиназывается сумма произведений масс этих точек на квадраты их расстоянийдо оси(рис. 51):
. (140')
В частном случае сплошного тела сумму следует заменить интегралом:
, (140')
Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции. Радиус инерции , относительно осиопределяется но формуле
, (141)
где – масса тела.
Момент инерции относительно оси через радиус инерции относительно этой оси определяется выражением
, (141')
В справочниках по моментам инерции приводят таблицы значений радиусов инерции различных тел.
Моменты инерции относительно осей координат
Моменты инерции относительно декартовых осей координат ,ии их начала – точки(рис. 52) – определяются выражениями:
,
,
, (142)
, (143)
где – координаты материальных точек системы. Для сплошных тел эти формулы примут вид
, ,
, .
Сумма моментов инерции относительно декартовых осей координат не зависит от ориентации этих осей в рассматриваемой точке, т.е. является величиной, инвариантной по отношению к направлению осей координат.
Д
Рис. 52
, ,. (144)
Центробежные моменты инерции часто называют произведениями инерции. Если центробежные моменты инерции равны нулю, оси называют главными осями инерции. Если при этом в качестве начала координат выбран центр масс, их называют главными центральными осями инерции
Моменты инерции относительно осей и точек – величины положительные. Центробежные моменты инерции могут быть как положительными, так и отрицательными.
Кроме рассмотренных моментов инерции иногда используются моменты инерции относительно координатных плоскостей ,,:
, ,.
3.3.3. Теорема Штейнера
У
Рис. 53
По определению момента инерции относительно оси имеем:
, ,
где – масса точки, аи– координаты этой точки относительно системи. Обозначим расстояние между осямиичерез.
Связь моментов инерции относительно двух параллельных осей, одна из которых проходит через центр масс, составляет содержание так называемой теоремы Штейнера или Гюйгенса–Штейнера: момент инерции системы относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение массы системы на квадрат расстояния между этими осями:
. (145)