- •Лекция № 1 Введение
- •1. Статика
- •1.1. Основные понятия статики
- •1.1.1. Момент силы Алгебраический момент силы относительно точки
- •Векторный момент силы относительно точки
- •Момент силы относительно оси
- •1.1.2. Пара сил Пара сил и алгебраический момент пары сил
- •1.2. Аксиомы статики
- •Лекция № 2
- •1.3. Простейшие теоремы статики
- •1.4. Приведение системы сил к простейшей системе. Условия равновесия
- •Равновесие пар сил
- •Условия равновесия произвольной системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы сходящихся сил
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •1.5. Центр тяжести твердого тела Центр параллельных сил
- •Способы нахождения центра тяжести
- •1.6. Распределенные силы
- •1.7. Трение Трение скольжения
- •Трение качения
- •1.8. Решение задач статики
- •Лекция № 3
- •2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Скорость и ускорение точки
- •2.1.2. Векторный способ задания движения точки
- •2.1.3. Координатный способ задания движения точки
- •2.1.4. Естественный способ задания движения точки
- •Частные случаи движения точки
- •Лекция № 4
- •2.2. Кинематика твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела при вращении вокруг неподвижной оси
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.3. Сложное движение точки
- •Ускорение Кориолиса
- •Лекция № 5
- •2.4. Плоское (плоскопараллельное) движение твердого тела
- •2.4.1. Скорости точек плоской фигуры
- •2.4.2. Мгновенный центр скоростей
- •2.4.3. Ускорения точек плоской фигуры
- •2.4.4. Мгновенный центр ускорений
- •2.5. Решение задач кинематики
- •Лекция № 6
- •3. Динамика
- •3.1. Аксиомы динамики
- •3.2. Динамика материальной точки
- •3.2.1. Дифференциальные уравнения движения материальной точки
- •3.2.2. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •3.2.3. Дифференциальные уравнения относительного движения материальной точки
- •3.3. Геометрия масс
- •3.3.1. Центр масс
- •3.3.2. Моменты инерции Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3.3. Теорема Штейнера
- •3.3.4. Моменты инерции однородных тел
- •3.4.1. Теорема о движении центра масс
- •3.4.2. Теорема об изменении количества движения Количество движения точки и системы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •3.4.3. Теорема об изменении кинетического момента
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Лекция № 8
- •3.4.4. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •3.5. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •Лекция № 9
- •3.6. Элементы аналитической механики
- •3.6.1. Классификация механических связей
- •3.6.2. Возможные перемещения
- •3.6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •3.6.4. Принцип возможных перемещений
- •3.6.5. Обобщенные координаты системы
- •3.6.6. Обобщенные силы
- •Вычисление обобщенной силы
- •Условия равновесия системы сил в терминах обобщенных сил
- •3.6.7. Общее уравнение динамики
- •Лекция № 10
- •3.6.8. Уравнения Лагранжа второго рода
- •3.7. Решение задач динамики
- •Контрольные Вопросы
- •Заключение
- •Библиографический список
- •Оглавление Лекция № 1
- •Лекция № 3
- •Лекция № 4
- •Лекция № 5
- •Лекция № 6
- •Лекция № 7
3.2.2. Две основные задачи динамики точки
Используя дифференциальные уравнения движения материальной точки в той или другой системе координат, можно решать две основные задачи динамики точки.
Первая задача
Зная массу точки и ее закон движения, можно найти действующую на точку силу. Действительно, если, например, заданы уравнения движения точки в декартовой системе координат
, ,,
то проекции силы на оси координат определяются из дифференциальных уравнений движения точки (130), т. е.
,
,
.
Зная проекции силы на координатные оси, легко определить модуль силы и косинусы углов силы с осями координат.
Таким образом, по заданной массе точки и уравнениям ее движения сила полностью определяется как по величине, так и по направлению.
Вторая задача
По заданной массе и действующей на точку силе необходимо определить движение этой точки. Рассмотрим решение этой задачи в прямоугольной декартовой системе координат. В общем случае сила , а следовательно, и ее проекции на координатные оси могут зависеть от времени, координат движущейся точки, ее скорости, ускорения и т.д. Ограничимся случаем зависимости силы и ее проекций на оси координат от времени, координат и скорости. Дифференциальные уравнения движения точки (130) имею вид:
;
; (130')
.
Для нахождения уравнений движения точки в декартовых координатах необходимо проинтегрировать систему трех обыкновенных дифференциальных уравнений второго порядка. Из теории обыкновенных дифференциальных уравнений известно, что решение одного дифференциального уравнения второго порядка содержит две произвольные постоянные. Для случая системы трех обыкновенных дифференциальных уравнений второго порядка имеется шесть произвольных постоянных: .
Каждая из координат движущейся точки после интегрирования системы уравнений (130) зависит от времениt и всех шести произвольных постоянных, т.е.
;
; (131)
.
Если продифференцировать уравнения (131) по времени, то определяются проекции скорости точки на координатные оси:
;
; (132)
.
Для определения констант интегрирования надо задать условия, позволяющие определить произвольные постоянные, которых в общем случае будет шесть. В качестве таких условий обычно задают так называемые начальные условия, т.е. в какой-то определенный момент времени, например при , задают координаты движущейся точкии проекции ее скорости:
, ,;,,. (133)
Задачи интегрирования системы дифференциальных уравнений (130') при заданных начальных условиях в общем случае является довольно трудной. Даже в простейшем случае прямолинейного движения, когда имеется только одно дифференциальное уравнение, получить его аналитическое решение удается лишь при определенной зависимости силы от времени, координаты и скорости. Поэтому важно определение таких соотношений из системы уравнений (130'), которые являются следствиями этой системы и в которые входят производные от координат точки только первого порядка. Такие соотношения, например, в виденазывают первыми интегралами системы дифференциальных уравнений (130').
Если из системы (130') удается найти три независимых первых интеграла, то задача интегрирования упрощается, так как вместо интегрирования системы дифференциальных уравнений второго порядка достаточно проинтегрировать систему трех дифференциальных уравнений первого порядка, которую представляют эти первые интегралы.