Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekcii_Teoreticheskaja_mekhanika / Лекции Теоретическая механика.doc
Скачиваний:
445
Добавлен:
31.05.2015
Размер:
5.31 Mб
Скачать

Векторные формулы для скоростей и ускорений точек тела

Выразим скорость, касательное, нормальное и полное ускорения точки тела в векторной форме (рис. 32). Скорость точки по модулю и направлению можно представить векторным произведением

, (75)

г

Рис. 32

де– радиус-вектор точки, проведенный из произвольной точки оси вращения, например точки. Выражение (75) называетсявекторной формулой Эйлера.

Из определения ускорения и векторной формулы Эйлера имеем:

. (76)

Первое слагаемое в (76) является касательным ускорением, а второе – нормальным, т. е.

, . (77)

2.3. Сложное движение точки

Для изучения некоторых, более сложных видов движений твердого тела целесообразно рассмотреть простейшее сложное движение точки. Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга. Так, движение космического корабля, движущегося к Луне, требуется рассматривать одновременно и относительно Земли и относительно Луны, которая движется относительно Земли. Любое движение точки можно считать сложным, состоящим из нескольких движений.

В

Рис. 33

простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти движения. Пусть имеем две системы отсчета, движущиеся друг относительно друга. Если одну из этих систем(рис. 33) принять за основную или неподвижную (ее движение относительно других систем отсчета не рассматривается), то вторая система отсчетабудет двигаться относительно первой. Движение точки относительноподвижной системы отсчета называется относительным. Характеристики этого движения, такие, как траектория, скорость и ускорение, называютсяотносительными. Их обозначают индексом; для скорости и ускоренияи. Движение точки относительноосновной, или неподвижной, системы отсчета называетсяабсолютным (или сложным). Его также иногда называют составным движением. Траектория, скорость и ускорение этого движения называются абсолютными. Скорость и ускорение абсолютного движения обозначают буквами ибез индексов.Переносным движением называют движение подвижной системы отсчета по отношению к неподвижной. Вследствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела , с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и ускорение той точки тела, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обозначаюти.

Теорема сложения скоростей: скорость абсолютного движения точки равна векторной сумме скоростей переносного и относительного движений этой точки

. (78)

Так как в общем случае скорости переносного и относительного движений не перпендикулярны, то

.

Абсолютную скорость можно представить в виде:

. (79)

Скорость

является скоростью точки свободного твердого тела, скрепленного с подвижной системой координат, с которой в данный момент совпадает точка в движении тела относительно неподвижной системы осей координат. Это есть переносная скорость точки.

Теорема сложения ускорений точки (кинематическая теорема Кориолиса): абсолютное ускорение точки является векторной суммой трех ускорений – переносного, относительного и Кориолиса

, (80)

где

. (81)

Ускорение называетсяускорением Кориолиса. Иногда его также называют добавочным (или поворотным) ускорением.

Абсолютное ускорение можно также представить в виде:

. (82)

В этой формуле первые три слагаемых составляют ускорение точки свободного твердого тела в общем случае его движения вместе с подвижной системой осей координат относительно неподвижной. Первое слагаемое – ускорение точки,и– соответственно вращательное и нормальное ускорения точки, если бы она двигалась только вместе с подвижной системой осей координат, не имея в рассматриваемый момент времени относительного движения.

При координатном способе задания в декартовых координатах

,

где – координаты движущейся точки относительно подвижной системы осей координат;– единичные векторы этих осей. При естественном способе задания движения

, ,,

где – расстояние от начала отсчета до точки по траектории относительного движения;– радиус кривизны этой траектории. В частном случае, когда переносное движение есть вращение вокруг неподвижной оси, переносное ускорение

,

где касательное переносное ускорение

,

причем – кратчайшее расстояние от движущейся точки до оси вращения. Нормальное переносное ускорение

.

Абсолютное ускорение в этом случае

. (83)