- •Лекция № 1 Введение
- •1. Статика
- •1.1. Основные понятия статики
- •1.1.1. Момент силы Алгебраический момент силы относительно точки
- •Векторный момент силы относительно точки
- •Момент силы относительно оси
- •1.1.2. Пара сил Пара сил и алгебраический момент пары сил
- •1.2. Аксиомы статики
- •Лекция № 2
- •1.3. Простейшие теоремы статики
- •1.4. Приведение системы сил к простейшей системе. Условия равновесия
- •Равновесие пар сил
- •Условия равновесия произвольной системы сил в векторной форме
- •Условия равновесия пространственной системы сил в аналитической форме
- •Условия равновесия пространственной системы сходящихся сил
- •Условия равновесия пространственной системы параллельных сил
- •Условия равновесия плоской системы сил
- •1.5. Центр тяжести твердого тела Центр параллельных сил
- •Способы нахождения центра тяжести
- •1.6. Распределенные силы
- •1.7. Трение Трение скольжения
- •Трение качения
- •1.8. Решение задач статики
- •Лекция № 3
- •2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Скорость и ускорение точки
- •2.1.2. Векторный способ задания движения точки
- •2.1.3. Координатный способ задания движения точки
- •2.1.4. Естественный способ задания движения точки
- •Частные случаи движения точки
- •Лекция № 4
- •2.2. Кинематика твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела при вращении вокруг неподвижной оси
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.3. Сложное движение точки
- •Ускорение Кориолиса
- •Лекция № 5
- •2.4. Плоское (плоскопараллельное) движение твердого тела
- •2.4.1. Скорости точек плоской фигуры
- •2.4.2. Мгновенный центр скоростей
- •2.4.3. Ускорения точек плоской фигуры
- •2.4.4. Мгновенный центр ускорений
- •2.5. Решение задач кинематики
- •Лекция № 6
- •3. Динамика
- •3.1. Аксиомы динамики
- •3.2. Динамика материальной точки
- •3.2.1. Дифференциальные уравнения движения материальной точки
- •3.2.2. Две основные задачи динамики точки
- •Первая задача
- •Вторая задача
- •3.2.3. Дифференциальные уравнения относительного движения материальной точки
- •3.3. Геометрия масс
- •3.3.1. Центр масс
- •3.3.2. Моменты инерции Моменты инерции относительно точки и оси
- •Моменты инерции относительно осей координат
- •3.3.3. Теорема Штейнера
- •3.3.4. Моменты инерции однородных тел
- •3.4.1. Теорема о движении центра масс
- •3.4.2. Теорема об изменении количества движения Количество движения точки и системы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •Законы сохранения количества движения
- •3.4.3. Теорема об изменении кинетического момента
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы
- •Законы сохранения кинетических моментов
- •Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
- •Дифференциальные уравнения плоского движения твердого тела
- •Лекция № 8
- •3.4.4. Теорема об изменении кинетической энергии Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы
- •3.5. Принцип Даламбера Принцип Даламбера для материальной точки
- •Принцип Даламбера для системы материальных точек
- •Силы инерции твердого тела в частных случаях его движения
- •Лекция № 9
- •3.6. Элементы аналитической механики
- •3.6.1. Классификация механических связей
- •3.6.2. Возможные перемещения
- •3.6.3. Элементарная работа силы на возможном перемещении. Идеальные связи
- •3.6.4. Принцип возможных перемещений
- •3.6.5. Обобщенные координаты системы
- •3.6.6. Обобщенные силы
- •Вычисление обобщенной силы
- •Условия равновесия системы сил в терминах обобщенных сил
- •3.6.7. Общее уравнение динамики
- •Лекция № 10
- •3.6.8. Уравнения Лагранжа второго рода
- •3.7. Решение задач динамики
- •Контрольные Вопросы
- •Заключение
- •Библиографический список
- •Оглавление Лекция № 1
- •Лекция № 3
- •Лекция № 4
- •Лекция № 5
- •Лекция № 6
- •Лекция № 7
Векторные формулы для скоростей и ускорений точек тела
Выразим скорость, касательное, нормальное и полное ускорения точки тела в векторной форме (рис. 32). Скорость точки по модулю и направлению можно представить векторным произведением
, (75)
г
Рис. 32
Из определения ускорения и векторной формулы Эйлера имеем:
. (76)
Первое слагаемое в (76) является касательным ускорением, а второе – нормальным, т. е.
, . (77)
2.3. Сложное движение точки
Для изучения некоторых, более сложных видов движений твердого тела целесообразно рассмотреть простейшее сложное движение точки. Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга. Так, движение космического корабля, движущегося к Луне, требуется рассматривать одновременно и относительно Земли и относительно Луны, которая движется относительно Земли. Любое движение точки можно считать сложным, состоящим из нескольких движений.
В
Рис. 33
Теорема сложения скоростей: скорость абсолютного движения точки равна векторной сумме скоростей переносного и относительного движений этой точки
. (78)
Так как в общем случае скорости переносного и относительного движений не перпендикулярны, то
.
Абсолютную скорость можно представить в виде:
. (79)
Скорость
является скоростью точки свободного твердого тела, скрепленного с подвижной системой координат, с которой в данный момент совпадает точка в движении тела относительно неподвижной системы осей координат. Это есть переносная скорость точки.
Теорема сложения ускорений точки (кинематическая теорема Кориолиса): абсолютное ускорение точки является векторной суммой трех ускорений – переносного, относительного и Кориолиса
, (80)
где
. (81)
Ускорение называетсяускорением Кориолиса. Иногда его также называют добавочным (или поворотным) ускорением.
Абсолютное ускорение можно также представить в виде:
. (82)
В этой формуле первые три слагаемых составляют ускорение точки свободного твердого тела в общем случае его движения вместе с подвижной системой осей координат относительно неподвижной. Первое слагаемое – ускорение точки,и– соответственно вращательное и нормальное ускорения точки, если бы она двигалась только вместе с подвижной системой осей координат, не имея в рассматриваемый момент времени относительного движения.
При координатном способе задания в декартовых координатах
,
где – координаты движущейся точки относительно подвижной системы осей координат;– единичные векторы этих осей. При естественном способе задания движения
, ,,
где – расстояние от начала отсчета до точки по траектории относительного движения;– радиус кривизны этой траектории. В частном случае, когда переносное движение есть вращение вокруг неподвижной оси, переносное ускорение
,
где касательное переносное ускорение
,
причем – кратчайшее расстояние от движущейся точки до оси вращения. Нормальное переносное ускорение
.
Абсолютное ускорение в этом случае
. (83)