Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekcii_Teoreticheskaja_mekhanika / Лекции Теоретическая механика.doc
Скачиваний:
471
Добавлен:
31.05.2015
Размер:
5.31 Mб
Скачать

2.1.3. Координатный способ задания движения точки

Движение точки в декартовых координатах считается заданным, если известны координаты точки как непрерывные, дважды дифференцируемые функции времени (рис. 24), т. е. заданы уравнения движения точки в декартовых координатах:

, ,. (50)

Уравнения движения точки в декартовых координатах полностью определяют движение точки. Они позволяют найти положение точки, ее скорость и ускорение в любой момент времени.

Разложим радиус-вектор и скорость точки на составляющие, параллельные осям координат. Получим

, , (51)

где – координаты точки;– единичные векторы осей координат;– проекции скорости на оси координат.

Учитывая (51), согласно определению скорости, имеем:

, (52)

Сравнивая (52) и (51), получаем для проекций скорости на декартовы оси координат следующие формулы:

, ,. (53)

Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки. По проекциям определяют числовое значение (модуль) скорости и косинусы углов вектора скорости с осями координат:

(54)

Разложим ускорение точки на составляющие, параллельные осям декартовой системы координат. Получим

, (55)

где – проекции ускорения на координатные оси. Согласно определению ускорения и формулам (52) и (51), имеем

. (56)

Формулы для проекций ускорения на оси декартовой системы координат:

, ,. (57)

Проекция ускорения на какую-либо координатную ось равна второй производной по времени от соответствующей координаты движущейся точки.

Числовое значение ускорения и косинусы углов вектора ускорения с осями координат определяем по формулам

. (58)

Касательная и нормальная составляющие ускорения вычисляются по формулам:

, . (59)

При движение точки ускоренное, при– замедленное.

2.1.4. Естественный способ задания движения точки

П

Рис. 25

ри естественном способе задания движения задаются траектория и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета.

Для задания закона движения точки по траектории необходимо выбрать на траектории точку , принимаемую за начало отсчета расстояний (рис. 25). Расстояния в одну сторону от точкипо траектории считаются положительными (например, вправо), в другую – отрицательными. Кроме того, следует задать начало отсчета времени. Обычно запринимают момент времени, в который движущаяся точка проходит через точку, или момент начала движения. Время до этого события считается отрицательным, а после него – положительным.

Если в момент времени движущаяся точка занимает положение, то закон движения точки по траектории задается зависимостью от времени расстояния, отсчитываемого от точкидо точки, т. е.. Эта функция должна быть непрерывной и дважды дифференцируемой.

При естественном способе задания движения используется понятие естественных осей координат. Сначала в точке строится соприкасающаяся окружность, которая наиболее плотно смыкается с траекторией из всех возможных. Ее центр называют центром кривизны траектории. Плоскость, в которой лежит соприкасающаяся окружность, называется соприкасающейся плоскостью.

Построим в точке кривой линииестественные оси этой кривой (рис. 26). Первой естественной осью является касательная . Ее положительное направление совпадает с направлением единичного вектора касательной, направленного в сторону возрастающих расстояний.

П

Рис. 26

ерпендикулярно касательнойрасполагаетсянормальная плоскость кривой. Нормаль, расположенная в соприкасающейся плоскости, называется главной нормалью . Она является линией пересечения нормальной плоскости с соприкасающейся плоскостью.

По главной нормали внутрь вогнутости кривой направим единичный вектор . Он определяет положительное направление второй естественной оси.

Нормаль, перпендикулярная главной нормали, называется бинормалью. Единичный вектор , направленный по бинормали так, чтобы три вектора,иобразовывали правую систему осей координат, определит положительное направление третьей естественной оси.

Три взаимно перпендикулярные оси ,и, положительные направления которых совпадают с направлениями единичных векторов,и, называютсяестественными осями кривой. Эти оси образуют в точке М естественный трехгранник. При движении точки по кривой естественный трехгранник движется вместе с точкой как твердое тело, поворачиваясь вокруг вершины, совпадающей с движущейся точкой.

Используя определение скорости, имеем:

,

где . Векторнаправлен по касательной к траектории как производная от вектора по скалярному аргументу и является единичным вектором. Модуль этого вектора равен единице, как предел отношения длины хордык длине стягивающей ее дугипри стремлении ее к нулю.

Единичный вектор всегда направлен по касательной к траектории в сторону возрастающих (положительных) расстояний независимо от направления движения точки.

Величина называетсяалгебраической скоростью точки. Ее можно считать проекцией скорости на положительное направление касательной к траектории, совпадающее с направлением единичного вектора .

Естественное задание движения точки полностью определяет скорость точки по величине и направлению. Алгебраическую скорость находят дифференцированием по времени закона изменения расстояний. Единичный вектор определяют по заданной траектории.

В соответствии с определением ускорения получаем

, (60)

так как инаправлен внутрь вогнутости траектории параллельно единичному вектору главной нормали.

Получено разложение ускорения точки по осям естественного трехгранника. Касательная, нормальная составляющие и полное ускорение равны

, ,. (61)