
- •Билет №1.Числовые множества. Модуль. Элементарные ф-ции. Графики. Преобразование графиков.
- •Алгебраические:
- •Билет №2. Числовые последовательности. Определение предела числовой последовательности.
- •Билет №4. Свойства пределов числовой последовательности .
- •Билет №5. Пределы ф-ций. Свойства пределов ф-ций.
- •Билет №6. Бесконечно малые и бесконечно большие функции. Сравнение бм.
- •Сравнение бесконечно малых
- •Билет №9. Разрывы функций.
- •Точки разрыва первого и второго рода
- •Билет № 12.Понятие производной функции. Свойства производной.
- •Билет № 13 .Геометрический смысл производной.
- •Билет № 14. Уравнение касательной к графику.
- •Билет №15. Связь понятий. Дифференцируемость ф-ции в точке и ее непрерывность.
- •2) Существует ф-ция в каждой точке непрерывная и не в 1ой точке, не имеющая производной.
- •Билет №16.Дифференциал ф-ции. Произв. Суммы, произведения и отношения 2х ф-ций.
- •Правила дифференцирования.
- •Билет №22. Формулы Тейлора и Маклорена.
- •Билет №25. Исследование функции на выпуклость.
- •Билет №27. Предельные величины в экономике.
- •Билет №28. Эластичность спроса.
- •Билет №29. Оптимизационные задачи в экономике.
Билет №9. Разрывы функций.
Понятие устранимого разрыва :
Теорема: предел функции в точке существует тогда и только тогда, когда существуют односторонние пределы.
Lim f(x)= a <-> Lim f(x) =a = Lim f(x) _ X X 0 + O X X 0 – O
Точка X 0 - точка разрыва,если в ней ф-ция неопределенна или не является непрерывной.
Устранимый разрыв - разрыв, при котором ф-ция определяется так, что она становится непрерывной.
Lim f(x) =a = Lim f(x)
X X 0 - O X X 0 + O
Если
предел ф-ции существует,
но он не совпадает со значением ф-ции в
данной точке: Lim
f(x)
≠f(a)
, тогда точка
называется точкой
устранимого разрыва
функции.
x
a
Точки разрыва первого и второго рода
Если ф-ция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением ф-ции в данной точке), то для числовых функций возникает 2 возможных варианта, связанных с существованием у числовых ф-ций односторонних пределов:
-
если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода. Точки устранимого разрыва являются точками разрыва первого рода;
-
если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.
Билет №10. Непрерывность сложной функции. Использование непрерывности ф-ции для вычисления пределов.
Пусть и
.
Функция непрерывна
в точке
,
если для любого
существует
такое,
что для любого
Функция непрерывна
на множестве
,
если она непрерывна в каждой точке
данного множества.
В этом случае
говорят, что функция класса
и
пишут:
или,
подробнее,
.
-
Определение непрерывности фактически повторяет определение предела ф-ции в данной точке. Другими словами, ф-ция
непрерывна в точке
, предельной для множества
, если
имеет предел в точке
, и этот предел совпадает со значением ф-ции
.
-
Функция непрерывна в точке, если её колебание в данной точке равно нулю.
Билет №11. Функции, непрерывные на отрезке. Их свойства. Примеры.
Ф-цию
y = f(x)
называют непрерывной
на отрезке [a,
b],
если она непрерывна во всех внутренних
точках этого отрезка, а на его концах,
т.е. в точках a
и b,
непрерывна соответственно справа и
слева.
Свойства:(наибольшее и наименьшее значения)
Теорема 1. Функция, непрерывная на отрезке [a, b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
Теорема утверждает, что если ф-ция y = f(x) непрерывна на отрезке [a, b], то найдётся хотя бы 1 точка x1 (принадл.) [a, b] такая, что значение ф-ции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в кот. значение ф-ции будет самым маленьким из всех знач. на отрезке: f(x1) ≤ f(x).
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что ф-ция f(x) принимает наименьшее значение в двух точках x2 и x2'.
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение ф-ции на интервале (a, b). Следствие. Если ф-ция f(x) непрерывна на [a, b], то она ограничена на этом отрезке.
Теорема 2 (об ограниченности непрерывной ф-ции). Если ф-ция f(x) непрерывна на отрезке [a,b], то она ограничена на этом отрезке, т.е. существует такое число C>0, что "x О [a,b] выполняется неравенство |f(x)| ≤ C.
Теорема 3.
Пусть ф-ция y = f(x) непрерывна на отрезке
[a, b] и на концах этого отрезка принимает
значения разных знаков, тогда внутри
отрезка [a, b] найдется, по крайней мере,
1 точка x = C, в которой ф-ция обращается
в ноль: f(C) = 0, где a < C< b
Эта теорема имеет простой геометрический смысл: если точки графика непрерывной функции y = f(x), соответствующие концам отрезка [a, b] лежат по разные стороны от оси Ox, то этот график хотя бы в одной точке отрезка пересекает ось Ox. Разрывные функции этим свойством могут не обладать.
Теорема 4. (теорема о промежуточных значениях). Пусть функция y = f(x) непрерывна на отрезке [a, b] и f(a) = A, f(b) = B. Тогда для любого числа C, заключённого между A и B, найдётся внутри этого отрезка такая точка C [a, b], что f(c) = C.
Эта
теорема геометрически очевидна.
Рассмотрим график функции y
= f(x).
Пусть f(a)
= A,
f(b)
= B.
Тогда любая прямая y = C, где C – любое
число, заключённое между A и B, пересечёт
график функции, по крайней мере, в одной
точке. Абсцисса точки пересечения и
будет тем значением x = C, при котором
f(c) = C.
Следствие. Если функция y = f(x) непрерывна на некотором интервале и принимает наибольшее и наименьшее значения, то на этом интервале она принимает, по крайней мере, один раз любое значение, заключённое между её наименьшим и наибольшим значениями.
Теорема
Коши о нулях непрерывной ф-ции. Только
на 1ом из отрезков – [a3; b3] –
имеется нуль ф-ции, так как на этом
отрезке ф-ция непрерывна и принимает
значения разных знаков на концах.
Теорема Коши. Если ф-ция f (x) непрерывна на отрезке [a; b] и принимает на его концах значения разных знаков, то на отрезке [a; b] имеется хотя бы 1 нуль ф-ции f. При этом, если ф-ция строго монотонна на этом отрезке, то она принимает значение 0 лишь 1 раз. |