Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия Билет.docx
Скачиваний:
432
Добавлен:
25.05.2015
Размер:
1.21 Mб
Скачать

2. Ерігіштік дегеніміз не? Ерігіштік өлшемін қандай шам алар арқылы анықталады?

Ерігіштік — заттың белгілі бір еріткіште еру қабілеті. Белгілі бір жағдайдағы заттың ерігіштігінің сипаттамасы ретінде оның қаныққан ерітіндідегіконцентрациясы алынады. Сондықтан ерітіндінің құрамын қалай сипаттаса, ерігіштікті де сан жағынан солай сипаттайды. Мысалы, заттың белгілі бір температурада белгілі бір еріткіштегі ерігіштігін оның қаныққан ерітіндісіндегі еріген заттың массалық үлесімен не оның молярлық концентрациясымен (моль/л) сипаттауға болады. Ерігішті көбінесе, еріткіштің 100 массалық бірлігінде қаныққан ерітінді түзілгенше еритін еріген заттың масса бірлігімен көрсетеді. Оны кейде ерігіштік коэффициенті деп те атайды. Заттардың судағы ерігіштегі әр түрлі. Егер 100 г суда еритін заттың массасы 10 г-нан асса — жақсы еритін, 1 г-нан кем болса — нашар еритін, 0,01 г-нан аз болса — іс жүзінде ерімейтін зат деп есептеледі. Заттардың Ерігіштігін алдын ала болжауға мүмкіндік беретін теориялар әзірге жасалған жоқ. Дегенмен химиктер кейбір заңдылықтарды байқады. Мысалы, молекулалары полюсті немесеиондық байланыспен байланысқан заттар (су, спирт, сұйық аммиак) полюсті еріткіштерде жақсы еритіндігі, ал молекулалары полюссіз заттар (бензол,күкіртті көміртек) полюссіз еріткіштерде еритіндігі анықталды. “Ұқсас заттар бір-бірінде жақсы ериді” деген ескі қағида осы заңдылықты тұжырымдайды. Сонымен қатар заттар ерігенде мынадай құбылыстар байқалады: жылу бөлінеді не сіңіріледі, ерітіндінің көлемі азаяды (көлемнің контракциясы) және түсі өзгереді. Осы құбылыстардың барлығы еріген зат пен еріткіш молекулалары арасында химиялық әрекеттесулер бар екендігіне дәлел.

3. Массасы 620г натрий оксиді әрекеттескенде сілтінің қандай массасы және қанша мөлшері түзілетінін есептеңдер.

Шешуі:

Берілгені : m (NaO) =620г Na2O+H2O = 2NaOH Табу керек : m, n (NaOH)? Шешуі : 1) n(Na2O)=m/M=620/23+2 х 16=11моль 2) n(NaOH)=11 х 2=22моль 3) m(NaOH)=n х M= 22 х 40=880г

17 Билет

1. Заттың аморфты және кристалды жүйелері

Аморфты зат (гр. а — жоқ; гр. morphe — пішін, форма; гр. substantia — зат) — борпылдақ дәнекер ұлпасы жасушалары мен талшықтарының аралықтарын толтырып тұратын, атқаратын қызметіне сәйкес қоймалжындығы өзгеріп отыратын гел тәрізді іркілдек пішінсіз масса. Әртүрлі мүшелердегі борпылдақ дәнекер ұлпасы жасушааралық тірі затындағы негізгі аморфты заттың мөлшері мен химиялық құрамы сол ұлпаның қызметі мен жағдайына байланысты ұдайы өзгеріп отырады. Негізгі аморфты зат — гликозаминді гликандардан, протеинді гликандардан, гликопротеидтерден, судан жөне түрлі бейорганикалық тұздардан тұрады. Бұлардың ішінде аморфты зат қүрамының негізін сульфаттанбаған гликозаминді гликандардың күрделі полимерлі түрі - гиалурон қышқылы құрайды. Бұл қышқылдың ұзын тармақталған полимерлі тізбегі әртүрлі бағытта иіліп, аралықтарында ұяшықтары мен өзектері болатын молекулалық тор жасайды. 

Кристалдар – атомдары мен молекулалары кристалдық тор түзетін қатты денелер. Кристалдар (грекше krystallos, оның алғашқы мағынасы мұз дегенді білдіреді) қатты денелердің тепе-теңдік күйі болып табылады. Белгілі бір термодинамикалық (қысым, температура) жағдайда кристалдық күйде болатын химиялық заттың нақты, тек өзіне тән кристалды атомдық құрылымы болады. Бұл құрылым атомдардың орналасуына байланысты кристалдардың сыртқы симметриясын және олардың анизотропиялық қасиеттерін бейнелейді. Табиғатта және техникада кездесетін қатты материалдардың көпшілігі – поликристалдар. Олар ретсіз орналасқан ұсақ кристалдардан (кристалиттер) құралады. Бұған көптеген минералдар, техникалық металдар мен қорытпалар жатады. Кристалдардың жеке ірі түрі монокристалл деп аталады. Табиғатта салмағы жүздеген килограмға жететін кварц, дала шпаты, флюорит кристалдарымен қатар мөлшері өте ұсақ алмас кристалы да кездеседі. Термодинамикалық тепе-теңдік жағдайда өсірілген кристалдардың пішіні белгілі бір симметриялы, дұрыс көпжақ түрінде болады. Олардың жақтары жазық болып келеді де, қырлары түзу сызық бойымен тұрақты бұрыш жасай қиылысады, яғни кристалдану кезінде кристалдардың жақтары өзіне-өзі параллель жылжиды. Бұл заңдылық геометриялық кристаллографияда бұрыштардың тұрақтылық заңы деп аталады. Геометриялық кристаллографияның ІІ заңы – бүтін сандар заңы — кристалдық заттардағы микропериодтылықтың макроскопиялық көрінісі болып табылады. Кристалдық тордың кез келген атомдық жазықтығы координаттық осьтер бағытында тор периодының бүтін сандарымен сипатталады. Кристалдың жақтары симметриялы болады, жақтары мен қырлары бір-бірімен симметрия амалдарының нәтижесінде беттесе алады. Әрбір амал симметрия осіне, жазықтығына не центріне байланысты орындалады. Кристалдық көпжақтар да симметрияның белгілі бір элементтерінің жиынтығымен сипатталады. Симметрияның 32 класы (32 нүктелік тобы) бар. Әрбір класс симметрияның белгілі бір элементтерімен сипатталады. Кристалдық тордың ерекшелігіне қарай кристалдың сыртқы пішіні белгілі бір класқа және сингонияға бөлінеді. Температураның не қысымның өзгеруіне байланысты кристалдардың құрылымы да өзгереді. Кейбір кристалды күйлер (фазалар) метастабильді (салыстырмалы тұрақты) күйде болады. Берілген зат құрылымының әр түрлі бірнеше кристалдық фазада болуы полиморфизм (мысалы, ақ және сұр қалайы, алмас және графит, кварцтың түрлері, т.б.) деп аталады. Қатты кристалдарға қарағанда, сұйық кристалдар мен аморфты денелерде (мысалы, шыны) атомдардың орналасу тәрітібі нашар сақталады. Кристалдардың өсуі кезіндегі тепе-теңдік шарттарының бұзылуы, кристалдану кезінде қоспалардың араласуы тәрізді әр түрлі әсерлердің салдарынан кристалдың идеал құрылымында ауытқулар байқалады. Кристалдық тор атомдарының орнын басатын аз мөлшерде қоспа атомдарын өндіру тәсілі кристалдың қасиеттерін өзгерту үшін техникада кең қолданылады. Мысалы, Al2O3  хром қосу арқылы кванттық электроникада пайдаланылатын лағыл (рубин) алынады. Кристалдардың бірқатар қасиеттері (жылулық, серпімділік, акустикалық) атомдардың өзара әсеріне байланысты анықталады. Мысалы, графитте атомдар жеке қабаттар түрінде орналасады. Оның көршілес екі қабаты арасындағы қашықтық бір қабаттағы атомдар арасындағы қашықтықтан үлкен болады. Сондықтан деформация кезінде графит жеке қабаттар бойынша біртіндеп ыдырайды. Бұл құбылыс графитті қарындаш ретінде пайдалануға мүмкіндік береді. Кристалдар электроникада, оның ішінде, кванттық электроникада ерекше орын алады. Аса қатты кристалдар (алмас, т.б.) материалдарды өңдеуде және бұрғылау ісінде пайдаланылады. Лағыл, сапфир, т.б. кристалдар сағат және басқа да дәл өлшеуіш аспаптардың негізгі элементі болып есептеледі.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]