Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
56
Добавлен:
17.08.2013
Размер:
277.66 Кб
Скачать

SEQUENCING THE FIFTH BASE

391

Figure 11.22

Genomic DNA sequencing can be used to find the location of methylated bases.

(a )

Basic scheme for

PCR-mediated genomic Maxam-Gilbert DNA sequencing. (

b ) A methylated base

prevents normal

Maxam-Gilbert cleavage and thus alters the appearance of the DNA sequencing

 

ladder. Adapted from Riggs et al. (1991).

 

nomic DNA is fragmented chemically as in the Maxam-Gilbert procedure. A sequence-

 

specific primer is annealed to the DNA after this

cleavage and extended up to the site

of

the cleavage. This creates a ligatable end. A splint is ligated onto all the genomic DNA

pieces. Then primers are used to extend the DNA

past the unique region of the splint,

as

we described earlier for single-sided PCR reactions in Chapter 4. Finally two primers are

used for exponential amplification. The sizes of the amplified products reveal where the

original cleavages were in the DNA. If all bases in the genome are accessible to the spe-

cific cleavage reactions used, then a perfectly normal sequencing ladder should result.

 

To find the location of

m C in genomic sequence, one takes advantage

of the fact that

this base renders DNA resistant to cleavage by the normal C-specific reaction used in the

 

Maxam-Gilbert method. The result, is that the locations of the methylated C’s drop out of

the sequencing ladder (Fig. 11.22

 

b ). If the target sequence is already completely known

except for the sites of methylation, this is all the information one needs. If not, one can al-

ways repeat the sequencing on a cloned

sample to

confirm the location of the

m C’s by

392 STRATEGIES FOR LARGE-SCALE DNA SEQUENCING

their new appearance as C’s. This method is quite powerful; it is providing interesting insights into the patterns of DNA methylation in cell differentiation and in X-chromosome inactivation.

SOURCES AND ADDITIONAL

READINGS

 

 

 

 

 

 

 

 

Ansorge, W., Voos, H., and Zimmermann, J., eds. 1995.

DNA

Sequencing:

Automated

and

 

Advanced Approaches.

 

New York: Wiley.

 

 

 

 

 

 

Azhikina, T., Veselovskaya, S., Myasnikov, V., Potapov, V., Ermolayeva, O., and Sverdlov, E. 1993.

 

 

Strings

of contiguous

modified

pentanucleotides with increased DNA-binded affinity can be

 

 

 

 

used for DNA sequencing by primer

walking.

 

Proceedings of the National Academy of Sciences

 

 

USA

90: 11460–11462.

 

 

 

 

 

 

 

Beskin, A. D., Sonkin-Zevin, D., Sobolev, I. A., and Ulanovsky, L. E. 1995. On the mechanism of

 

 

 

the modular primer effect.

Nucleic Acids Research

23: 2881–2885.

 

 

 

Borodin, A., Kopatnzev, E., Wagner, L., Volik, S., Ermolaeva, O., Lebedev, Y., Monastyrskaya, G.,

 

 

Kunz, J., Grzeschik, K.-H., and Sverdlov, E. 1995. An arrayed library enriched in hncDNA cor-

 

 

 

responding to transcribed sequences of

human chromosome 19: Preparation and

analysis.

 

 

 

Genetic Analysis

12: 23–31.

 

 

 

 

 

 

Church, G. M., and Kieffer-Higgins, S. 1988. Multiplex DNA sequencing.

 

 

Science

240: 185–188.

Gordon, D., Abajian, C., and Green, P. 1998. Consed: A graphical tool for sequence finishing.

 

 

 

Genome Research

8: 195–202.

 

 

 

 

 

 

Henikoff, S. 1984. Unidirectional digestion with exonuclease

III creates targeted breakpoints

for

 

 

 

DNA sequencing.

Gene

28: 351–359.

 

 

 

 

 

 

Hillier, L., et al. 1996. Generation and analysis of

280,000 human expressed

sequence tags.

 

 

 

Genome Research

6: 807–828.

 

 

 

 

 

 

Hunkapiller, T., Kaiser, R. J., Koop, B. F., and Hood, L. 1991. Large-scale and automated DNA se-

 

 

 

quence determination.

 

Science

254: 59–67.

 

 

 

 

 

Kieleczawa, J., Dunn, J. J., and Studier, W. F. 1992. DNA sequencing by primer walking with

 

 

 

strings of contiguous hexamers.

 

Science

258: 1787–1791.

 

 

 

 

Kotler, L., Sobolev, I., and Ulanovsky, L. 1994. DNA sequencing: Modular primers for automated

 

 

 

walking.

BioTechniques

17: 554–558.

 

 

 

 

 

 

Kozak, M. 1996. Interpreting cDNA sequences: Some

insights from studies on

translation.

 

 

 

Mammalian Genome

 

7: 563–574.

 

 

 

 

 

 

Li, C., and Tucker, P.W.

1993.

Exoquence DNA sequencing.

 

Nucleic

Acids Research

21:

1239–1244.

 

 

 

 

 

 

 

 

 

Makatowski, W., Zhang, J., and Boguski, M. S. 1996. Comparative analysis of 1196 Orthologous

 

 

 

mouse and human full-length mRNA and protein sequences.

 

Genome Research

 

6: 846–857.

 

McCombie, W. R., and Kieleczawa, J. 1994. Automated DNA sequencing using 4-color fluorescent

 

 

 

 

detection of reactions primed with hexamer strings.

BioTechniques

17: 574–579.

 

Ohara, O., Dorff, R. L., and Gilbert, W. 1989. Direct genomic sequencing of bacterial DNA: The

 

 

 

pyruvate kinase I gene of

 

Escherichia coli. Proceedings of the National Academy

of Sciences

 

 

 

USA

86: 6883–6887.

 

 

 

 

 

 

 

 

Patanjali, S. R., Parimod, S., and Weissman, S. M. 1991. Construction of a uniform-abundance

 

 

 

(normalized) cDNA library.

 

Proceedings of the National Academy of Sciences

 

 

88: 1943–1947.

Raja, M. C., Zevin-Sonkin, D., Shwartburd, J., Rozovskaya, T. A., Sobolev, I. A., Chertkov, O.,

 

 

 

Ramanathan, V., Lvovsky, L., and Ulanovksy, U. 1997. DNA sequencing using differential ex-

 

 

 

pression with nucleotide subsets (DENS).

 

Nucleic Acids Research

 

25: 800–805.

 

 

 

 

 

 

 

SOURCES

AND

ADDITIONAL

READINGS

 

 

393

Riggs, A., Saluz, H. P., Wiebauer, K., and Wallace, A. 1991. Studying

DNA modifications and

 

 

 

DNA-protein interactions in vivo.

Trends in Genetics

7: 207–211.

 

 

 

Saluz, H. P., Wiebauer, K., and Wallace, A. 1991. Studying DNA modifications and DNA-protein

 

 

 

interactions in vivo.

Trends in Genetics

 

7: 207–211.

 

 

 

 

 

Sasaki, Y. F., Ayusawa, D., and Oishi, M. 1994a. Construction of a normalized cDNA library by in-

 

 

 

 

troduction of a semi-solid mRNA-cDNA hybridization system.

 

 

Nucleic

Acids

Research

22:

987–992.

 

 

 

 

 

 

 

 

 

 

Sasaki, Y. F., Iwasaki, T., Kobayashi, H., Tsuji, S., Ayusawa, D., and Oishi, M. 1994b. Construction

 

 

 

of an equalized cDNA library from human brain by semi-solid self-hybridization

system.

 

 

 

DNA

Research

 

1: 91–96.

 

 

 

 

 

 

 

 

Schuler, G.D., et al. 1996. A gene map of the human genome.

 

 

Science

274: 540–546.

 

Smith, M. W., Holmsen, A. L., Wei, Y. H., Peterson, M., and Evans, G. A. 1994. Genomic sequence

 

 

 

sampling: A strategy for high resolution sequence-based physical mapping of complex genomes.

 

 

 

 

Nature Genetics

 

7: 40–47.

 

 

 

 

 

 

 

 

Soares, M. B., Bonaldo, M. D. F., Jelene, P., Su, L., Lawton, L., and Efstratiadis, A. 1994.

 

 

Construction and characterization of a normalized cDNA library.

 

 

Proceedings of

the National

 

Academy of Sciences USA

91: 9228–9232.

 

 

 

 

 

 

Strausbaugh, L. D., Bourke, M. T., Sommer, M. T., Coon, M. E., and Berg, C. M. 1990. Probe map-

 

 

 

ping to facilitate transposon-based DNA sequencing.

 

 

 

Proceedings of

the National Academy of

 

Sciences USA

87: 5213–6217.

 

 

 

 

 

 

 

 

Studier, F. W. 1989. A strategy for high-volume sequencing of cosmid DNAs: Random and directed

 

 

 

 

priming with a library of oligonucleotides.

 

Proceedings

of

the National Academy of

Sciences

 

USA

86: 6917–6921.

 

 

 

 

 

 

 

 

Szybalski, W. 1990. Proposal for sequencing DNA using ligation of hexamers to generate sequen-

 

 

 

 

tial elongation primers (SPEL-6).

Gene

90: 177–178.

 

 

 

 

 

Venter, J. C., Smith, H. O., and Hood L. 1996. A new strategy for genome sequencing.

 

 

Nature

381:

364–366.

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке genomics11-15