Колобашкина-Част-1
.pdf
|
. |
|
|
, |
|
|
, |
|
|
, |
- |
|
|
|
|
. |
|
|
, |
|
|
« |
» |
, |
|
|
|
|
, |
|
|
|
|
, |
- |
. |
|
|
|
|
|
2.2. |
|
« |
|
» |
- |
( |
): |
|
|
|
|
|
6 |
3 |
9 |
5 |
|
|
A= 3 |
4 |
5 |
13 . |
|
|
9 |
6 |
4 |
11 |
|
|
|
|
|
, |
- |
, |
0.5 , |
|
. |
|
|



.
1.
W
max min aij
max [3; 3; 4] = 4.
ij
, |
3. |
|
|
|
2. |
|
|
|
- |
: |
|
|
|
|
|
3 |
3 |
0 |
8 |
R |
6 |
2 |
4 |
0 . |
|
0 |
0 |
5 |
2 |
W
min max rij
min [8; 6; 5] = 5.
ij
, |
|
3. |
3. |
|
|
W max[ |
min a ij |
(1 ) max aij ] max [6; 8; 7.5] = 8. |
i |
j |
j |
, |
|
A2. |
|
|
|
|
|
81 |
4. |
|
Q1 = Q2 = Q3 = Q4 = 1/4; |
|
|
1 |
n |
|
W max |
|
aij max Mi ; |
|
n |
|||
i |
j 1 |
||
|
i |
||
|
|
|
M1 = 6·l/4 + 3·l/4 + 9·l/4 + 5·l/4 = 23/4;
M2 = 3·l/4 + 4·l/4 + 5·l/4 + 13·l/4 = 25/4;
M3 = 9·l/4 + 6·l/4 + 4·1/4 + 11·l/4 = 30/4.
3, 








3.


























-
















3, 










-







.
2.3.

























-


















, 






-
















. 











, 
























-





. 




















-













.




, 




















- 























[1].
2.3.1. 

«



»
«



» 









, 





















«


», 
















.





:
|| aij || (i = 1, |
, m; j = 1, |
, n); |
Q1, ,Qn |
« |
» |
1, , n; |
|
|
|
. |
|
82 |
|
|
|
. |
|
, |
*= i, |
- |
: |
|
~ |
~ |
max[Q1ai1 ... |
Qn ain ]. |
|
(2.3.1) |
|
a |
maxa i |
|
||||
|
i |
i |
|
|
|
|
|
|
|
|
|
|
. |
|
, |
|
|
|
, |
- |
, |
|
1, |
, |
n |
|
- |
. |
|
1, |
|
|
|
- |
i, |
|
|
|
|
|
1: |
|
|
max ai1 1 . |
|
|
|
|
|
|
i |
|
|
|
|
|
|
« |
» |
j |
|
- |
















j-



:
|
max aij |
j . |
|
|
i |
|
|
|
, |
|
- |
|
. |
, |
- |
, |
j |
|
- |
|
j . |
|
- |
|
, |
|
- |
Q j |
, |
, |
- |






:
Q1 |
1 |
|
Q2 2 |
... |
Qn |
n . |
|
(2.3.2) |
|
|
|
|
|
|
|
|
- |
. |
|
|
|
|
|
|
|
|
a |
Q1 |
1 |
Q2 |
2 |
... |
Qn n |
. |
(2.3.3) |
|
|
~ |
|
~ |
, |
|
|
|
|
|
> |
|
|
|
|
||
|
|
a |
a . |
|
|
|
|
|
~ |
, |
~ |
|
|
|
(2.3.3), (2.3.1) |
||
a |
a |
|
|
|
||||





:
83
|
|
n |
|
n |
|
|
max |
|
Qj aij |
Qj j C. |
(2.3.4) |
|
i |
j |
1 |
j 1 |
|
|
|
|
|||
|
|
. |
|
|
, |
« |
» |
|
|
, |
|
|
« |
|
» « |
» ( max( f ) = min( f )). |
|









(2.3.4) 












:
n |
|
|
|
(2.3.5) |
min |
Qj ( j |
aij |
) . |
|
i |
1 |
|
|
|
j |
|
|
|
|
|
( |
j |
aij ) |
|
rij , 





















:
|
|
|
n |
|
|
|
|
Q jrij . |
(2.3.6) |
ri |
||||
|
|
j |
1 |
|






,












.














, 









- 


















ri :
C min |
ri |
. |
(2.3.7) |
i |
|
||












*, 











-









.
|
. |
|
|
|
|
|
|
|
2.3. |
|
|
|
|
|
|
, |
|
|
. 2.4: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
j |
1 |
2 |
3 |
|
4 |
|
|
i |
|
|
||||
|
|
|
|
|
|
|
|
|
= |
|
1 |
|
1 |
4 |
5 |
|
9 |
|
2 |
|
3 |
8 |
4 |
|
3 |
|
|
|
3 |
|
4 |
6 |
6 |
|
2 |
|
|
Qj |
|
0.1 |
0.2 |
0.5 |
|
0.2 |
|
|
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qj |
|
|||
« |
» |
j. |
|
|
|
|
|
|
|
|
|
|
||
|
|
, |
|
|
|
« |
|
» |
|
- |
||||
|
, |
|
|
|
( |
|
, |
|
|
|
|
|
|
|
|
) C = 2. |
|
|
|
|
|
|
|
|
|
|
|||
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
- |
( |
. 2.5). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.5 |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j |
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
1 |
2 |
3 |
4 |
|
ri |
|
|||
|
|
|
|
|
|
|
||||||||
|
R = |
|
|
1 |
|
3 |
4 |
1 |
0 |
|
1.6* |
|
||
|
|
|
2 |
|
1 |
0 |
2 |
6 |
|
2.3 |
|
|||
|
|
|
3 |
|
0 |
2 |
0 |
7 |
|
1.8 |
|
|||
|
|
|
|
Qj |
|
0.1 |
0.2 |
0.5 |
0.2 |
|
|
|
|
|





















(2.3.6): r1
0.1
3
0.2
4
0.5
1
0.2
0
1.6;
r2
0.1
1
0.2
0
0.5
2
0.2
6
2.3; r3
0.1
0
0.2
2
0.5
0
0.2
7
1.8.






(2.3.7):
|
min |
ri |
min (1.6, |
2.3, 1.8) 1.6 |
2. |
|
|
i |
|
|
|
|
|
|
|
|
|
1.6, |
, |
- |
|
|
|
|
, |
|
- |
, |
|
|
|
|
, . . |
- |
|
1. |
|
|
|
|
|
2.3.2. |
« |
|
» |
|
|
|
« |
» |
|
|
|
|
|
|
« |
» |
j, |
- |
|
|
|
|
|
|
. |
|
|
|
|
|
, |
|
|
- |
|
k |
|
B1, |
, Bk. |
- |
|
|
|
|
85 |
|
|
|
























, 









: 1,
, n .























Bl 

-
j 







:
P(Bl / j )
( j = 1,
, n; l = 1,
, k) 






, 









-








.






, 


















-





:
|
|
|
|
|| aij |
|| (i = 1, |
, m; j = 1, |
, n); |
|
||
|
« |
» |
|
|
Q1, , |
Qn |
|
|
||
« |
|
» 1, , |
n; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bl |
|
j |
(j = 1, ,n; l = 1, ,k ); |
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
, |
|
Bl, |
- |
|
|
|
|
|
|
|
|
|
: |
« |
» |
1, |
, |
n |
|
|
|
|
|
« |
|
» |
|
|
Q1, |
, Qn , |
|
« |
|
» |
- |
||
|
|
Q1l , ..., Qnl , |
|
|
|
|
|
|
|
|
1, |
, |
n |
, |
|
|
|
Bl. |
|
- |
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
Q jl |
|
Qj P(Bl / |
j |
) |
, |
j 1, ..., n. |
(2.3.8) |
|
|
|
|
n |
|
|
|||||
|
|
|
|
Qj P(Bl / |
|
j ) |
|
|
|
|
|
|
|
|
j 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
« |
» Q1, |
, |
Q n 














Q1l , ..., Qnl , 


-



* 

















-
~* , |
|
|
- |
l |
|
|
|
( |
Bl ). |
|
|
|
. |
|
|
2.4. |
2.3 ( . |
. 2.4) |
- |
|
: Q1 = 0.1; |
Q2 = 0.2; |
Q3 = 0.5; |
|
86 |
|
|
Q4 = 0.2 |
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
: |
1, |
2, 3. |
- |
|
|
|
|
|
|
|
P(B l / |
j) |
|
|
|
|
|
1, 2, 3, |
4 |
|
|
|
|
|
- |
|||
( |
. 2.6). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j |
1 |
2 |
3 |
|
4 |
|
|
|
|
Bl |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
B1 |
|
0.2 |
0.9 |
0.4 |
|
0.3 |
|
|
|
|
B2 |
|
0.1 |
0.1 |
0.5 |
|
0.3 |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
B3 |
|
0.7 |
0 |
0.1 |
|
0.4 |
|
|
|
|
|
|
|
|
|
, |
|
|
|
, |
|
|
|
|
|
|
|
|
|
. |
|
- |
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
. |
|
|
, |
|
|
|
|
|
- |
|
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qj1 , j |
1, ..., 4, |
||
« |
|
» |
1, |
2, |
3, |
4 |
|
|
|
(2.3.8) |
- |
||||||
1: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
Q11 |
|
|
Q1P(B1 / |
1) |
|
|
|
|
|
|
|||
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
Q j P(B1 / |
|
j ) |
|
|
|
|
||||
|
|
|
|
|
|
|
j 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 0.2 |
|
|
|
|
|
0.02 |
0.043; |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0.1 |
0.2 |
0.2 |
0.9 |
0.5 |
0.4 |
0.2 |
0.3 |
0.46 |
|||||||||
|
|
||||||||||||||||
|
|
|
|
Q21 |
|
|
Q2 P(B1 / |
2 ) |
|
|
|
|
|
||||
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
||||
Qj P( B1 /
j )
j 1
|
|
|
0.2 |
0.9 |
|
|
|
|
0.18 |
0.392; |
|
0.1 |
0.2 |
0.2 |
0.9 |
0.5 |
0.4 |
0.2 |
0.3 |
0.46 |
|||
|
|||||||||||
|
|
|
|
|
87 |
|
|
|
|
|
|
Q Q1P(B2 / 1 )
12 4
Qj P(B2 /
j )
|
|
|
|
|
|
j 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.1 |
|
|
|
|
|
0.01 |
0.029; |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
0.1 |
0.1 |
0.2 |
0.1 |
0.5 |
0.5 |
0.2 |
0.3 |
0.34 |
||||||
|
|
|
|||||||||||||
~ |
0.02 |
0.059; |
~ |
|
0.25 |
0.735; |
|
~ |
|
0.06 |
0.177; |
||||
Q22 |
|
|
Q32 |
|
|
Q42 |
|
||||||||
0.34 |
0.34 |
|
0.34 |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
Q13 |
Q1P(B3 / 1 ) |
|
|
|
|
|
|
|
|||
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
||
Qj P(B3 /
j )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.7 |
|
|
|
|
|
|
|
|
0.07 |
0.35; |
|
|
|
|
|
|||||||
|
0.1 |
0.7 |
0.2 |
0 |
0.5 |
0.1 |
0.2 |
0.4 |
|
0.2 |
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
~ |
|
|
|
|
|
0 |
|
|
0; |
~ |
0.05 |
|
0.25; |
~ |
|
|
0.08 |
0.4. |
|
|
|
|
||||||||||||||
|
Q23 |
|
|
|
|
|
|
|
|
Q33 |
|
|
|
|
|
Q43 |
|
|
|
|
|
|
|
|
|||||||||||||
|
0.2 |
|
|
0.2 |
|
0.2 |
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
. 2.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 2.8, |
|
- |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2, |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2, 3 |
|
- |
||||||||
|
|
|
(2) |
, |
|
|
|
(3) |
(i = 1, 2, 3), |
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
- |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
i |
|
|
|
i |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
, |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 2.8. |
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.8 |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1) |
|
|
|
|
|
(2) |
|
|
|
(3) |
|
|
|
1 |
|
|
|
|
|
|
|
2 |
|
|
3 |
|
|
|
|
4 |
|
a |
|
|
a |
a |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
i |
|
|
i |
|
||||||||||||
A1 |
1 |
|
|
|
|
|
|
|
|
4 |
|
|
5 |
|
|
|
|
9 |
4.96 |
|
|
5.533* |
|
5.2* |
|
||||||||||||
A2 |
3 |
|
|
|
|
|
|
|
|
8 |
|
|
4 |
|
|
|
|
3 |
5.395* |
|
|
4.030 |
|
3.25 |
|
||||||||||||
A3 |
4 |
|
|
|
|
|
|
|
|
6 |
|
|
6 |
|
|
|
|
2 |
5.394 |
|
|
5.234 |
|
3.7 |
|
||||||||||||
Qj1 |
0.043 |
|
|
|
|
0.392 |
|
0.435 |
|
|
0.130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
Q j 2 |
0.029 |
|
|
|
|
0.059 |
|
0.735 |
|
|
0.177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
Q j 3 |
0.35 |
|
|
|
|
|
|
|
0 |
|
0.25 |
|
|
|
0.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
89





.










. 2.8 











-









.
1, 








-







2; 














5.395.













2 

3, 









-





1; 












2
5.533, 





3
5.2.


























-
|
|
|
. |
|
|
: |
|
|
|
|
3 |
|
|
(l ) , |
a |
P(B ) max |
|
||
a |
||||
|
l |
i |
i |
|
|
l 1 |
|
|
|
|
|
|
|
|
i |
i (i = 1, 2, 3). |
|
|
|
1,
2 
3.
4
P(B1 ) 
Q j P(B1 /
j) 
j 1
0.1
0.2
0.2
0.9
0.5
0.4
0.2
0.3
0.46;
4
P(B2 ) 
Q j P(B2 /
j) 
j 1
0.1
0.1
0.2
0.1
0.5
0.5
0.2
0.3
0.34;
4
P(B3 ) 
Q j P(B3 /
j) 
j 1
0.1
0.7
0.2
0
0.5
0.1
0.2
0.4
0.20.



























-





















:
a

0.46
5.395
0.34
5.533
0.2
5.2
5.403.













, 










-














(2.3.1). 



































:
90

0.043
1
0.392
4
0.435
5
0.130
9
4.956;
0.043
3
0.392
8
0.435
4
0.130
3
5.395*;
0.043
4
0.392
6
0.435
6
0.130
2
5.394.







. 2.7.


, 

















-
























-




.










2
3 





