Колобашкина-Част-1
.pdf
|
|
|
|
0.5 |
1 |
3.5 |
|
2 |
|
|
|
|
|
|
1 |
2 |
3.5 |
. |
|
|
|
|
|
|
|
4.5 |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
. |
|
|
|
|
: |
|
|
|
|
|
|
1 |
(1) |
1 |
[1,1]. |
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
SA* = [1 |
0]; |
SB *= [1 |
0 0 0]. |
|
|
|||
|
|
= 0.5. |
|
|
|
|
|
|
|
|
|
|
4.8. |
|
|
|
|
|
|
|
|
1- |
|
|
|
|
|
: |
|
, |
- |
|
1, |
|
|
|
2/3, |
|
2 |
1/3. |
|
|
|
|
x = 1, |
2- |
|
|
|
y |
- |
|
||
|
|
{1, 2}, |
|
|
|
|
1- |
|
||
, |
|
3- |
|
|
|
|
|
z |
|
|
|
{1,2}, |
|
, |
|
|
|
|
|
|
|
|
|
1- |
|
|
|
|
|
2- |
. |
|
|
x = 2, |
2- |
|
|
|
|
y |
- |
|
|
|
|
{1, 2}, |
|
|
|
|
1- |
- |
|
|
, |
3- |
|
|
|
|
|
|
z |
- |
|
{1,2}, |
, |
|
|
. |
|
|
|
, |
|
|
|
|
|
W(x, |
, z), |
|
, |
|
- |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 4.9. |
|
|
|
|
-2 |
4 |
1 -4 |
3 |
0 -3 |
-5 |
|
|
|
|
|
1 |
2 |
1 |
2 |
1 |
2 1 |
2 |
|
|
|
|
|
|
|
|
A |
|
A |
|
|
|
|
1 |
|
2 |
1 |
B |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
. 4.9 |
|
|
|
|
|
|
|
|
142 |
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
y, z |
|
, |
( {1, 2}) |
|
2- |
|
|
|
|
||||
|
|
|
|
|
|
|
|
, |
1- |
|
|
|
x = 1, z (z {1,2}) |
|
|
3- |
, |
1- |
x = 2. |
, |
- |
||


1, 2



, 

2-









y = 1, 
3-


z = 2.
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
1 |
|
|
1,1 |
|
, |
2 |
|
|
|
|
1, 2 |
|
|
|
, |
3 |
|
|
|
|
2,1 |
|
, |
4 |
|
|
|
|
2, 2 |
|
. |
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
1 |
|
|
1,1 |
|
, |
2 |
|
1, 2 |
|
, |
3 |
|
|
2,1 |
|
, |
4 |
|
|
2, 2 |
|
. |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
||||||
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
1, 2 |
|
, |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
2,1 |
|
. |
|
|
|
|
|
|
|
|
|
|
|
: 1) |
x = 1 |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
2) x = 2.







= 1 


















2-

(


y), 







3-
(


z).
= 2 |
|
|
: |
- |
2- |
( |
y), |
3- |
( - |


z).


= 1, 





2 








2-


-


y = 1, 





3 








3-





z = 1. 





W (x,
, z) = W (1,1,1) =
2.


= 2, 





3 








2-


-


y = 2, 





2 








3-





z = 2. 





W (x,
, z) = W (2,2,2) =
5.


















1-




-
















2/3
1/3, 


























, 





,























: (
2)·2/3 + (
5)·1/3 =
3.
143















, 








-




















.
. 





,















1 
2 






-










. 












[x1, x2]



x 1, 
















1-2
1-





















{q2, q3},

















(

























),
.
. x1({q2, q3})
{1,2}.



x2, 
















3
1-

(





















{q8,
q10, q11}), |
|
|
|
|
( |
|
|
|
|
|
), . . |
x2({q8, q10, q11}) {1,2}. |
|
|
|
||
|
, |
4 |
|
: |
|
1 |
[1,1] |
(x1({q2, q3}) = 1, x2({q8, q10, q11}) = 1); |
|||
2 |
[1,2] |
(x1({q2, q3}) = 1, x2({q8, q10, q11}) = 2); |
|||
3 |
[2,1] |
(x1({q2, q3}) = 2, x2({q8, q10, q11}) = 1); |
|||
4 |
[2,2] |
(x1({q2, q3}) = 2, x2({q8, q10, q11}) = 2). |
|||
. 4.10 |
, |
|
|
: |
|
, |
|
|
|
1 |
- |
|
2 |
3 (2-3). |
, |
|
|
|
|
|
(2-3 |
1), |
|
|
|
|
|
|
|
[y1, y2]. |
, |
|
{q4, q7} |
- |
|
|
1 |
2. |
|
|
|
|
, |
|
[y1, y2] |
y1, - |
|
|
|
|
2-3 |
1- |
, |
|
|
|
|
{q4, q7}, |
|
|
|
( |
|
|
|
|
|
), . . y1({q4, |
q7}) |
{1,2}. |
y2, |

















1
1-

(





















{q5, q6}), 

-














(
























),
.
. y2({q5, q6})
{1,2,3}.
, |
6 |
: |
1 [1,1] |
(y1({q4, q7}) = 1, y2({q5, q6}) = 1); |
|
|
147 |
|
2 |
[1,2] |
(y1({q4, q7}) = 1, |
y2({q5, q6}) = 2); |
|
3 |
[1,3] |
(y1({q4, q7}) = 1, |
y2({q5, q6}) = 3); |
|
4 |
[2,1] |
(y1({q4, q7}) = 2, |
y2({q5, q6}) = 1); |
|
5 |
[2,2] |
(y1({q4, q7}) = 2, |
y2({q5, q6}) = 2); |
|
6 |
[2,3] |
(y1({q4, q7}) = 2, |
y2({q5, q6}) = 3). |
|
q 1 |
|
1, 2, 3 |
|
|
( |
|
) |
|
0.1, |
0.2, 0.7. |
|
|
|
|
|
|
|
q9, |
1 |
|
|
1/3, |
2 |
|
2/3. |
|
|
|
|
({Ai, Bj}, q, a), |
{Ai, Bj}(i = 1, ,4; j = 1, ,6) |
, |
|
Ai, Bj, |
; |
q 








; 






.



, 






{Ai, Bj} 






q 

-

, 



















, 






({Ai, Bj}, q, a) = 1; 















-















, 
({Ai, Bj}, q, a) = 0.


, 


, 

















- 

2
[1,2]:
x1({q2, q3}) = 1, x2({q8, q10, q11}) = 2, 







6
[2,3]:
y1({q4, q7}) = 2, y2({q5, q6}) = 3.
|
|
|
{A2, B6}. |
: |
|
|
|
q1 |
({A2, B6}, q1, 1) |
= 0.1, |
p({A2, B6}, q1, 2) = 0.2, |
|
p({A2, B6}, q1, 3) |
= 0.7; |
|
q2 |
p({A2, B6}, q2, 1) = 1, |
({A2, B6}, q2, 2) = 0; |
|
q 3 |
p({A2, B6}, q3, 1) = 1, |
({A2, B6}, q3, 2) = 0; |
|
q 4 |
p({A2, B6}, q4, 1) = 0, |
({A2, B6}, q4, 2) = 1; |
|
q 5 |
p({A2, B6}, q5, 1) = 0, |
p({A2, B6}, q5, 2) = 0, |
|
|
({A2, B6}, q5, 3) = 1; |
|
|
q6 |
p({A2, B6}, q6, 1) = 0, |
({A2, B6}, q6, 2) = 0, |
|
|
({A2, B6}, q6, 3) = 1; |
|
|
|
148 |
|
|
q7 |
p({A2, B6}, q7, 1) = 0, |
({A2, B6}, q7, 2) = 1; |
|
|
q 8 |
p({A2, B6}, q8, 1) = 0, |
({A2, B6}, q8 , 2) = 1; |
|
|
q 9 |
p({A2, B6}, q9, l) = 1/3, |
({A2, B6}, q9, 2) |
= 2/3; |
|
q 10 |
p({A2, B6}, q10, 1) = 0, |
({A2, B6}, q10, 2) = 1; |
|
|
q 11 |
p({A2, B6}, q11, 1) = 0, |
({A2, B6}, q11, 2) |
= 1. |
|
|
{A i, Bj} |
|
; tk |
|
, |
|
; q1, , qr |
, |
|
|
. |
({Ai, Bj}, tk) |
- |
|
, |
|
tk, |
|
- |
|
{Ai, Bj}. |
|
|
|
|
|
|
|
|
({Ai, Bj}, tk) = |
({Ai , B j}, qs , a s(t k )), |
s |
1,.., r |
qs 











, 











-




, as(tk ) 





, 











qs , 







t k .



, 

















{A2, B6},








, 
({A2, B6}, t1) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 1) ·
({A2, B6}, q5, 1) = = 0.1 · 1· 0 = 0;
({A2, B6}, t2) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 1) ·
({A2, B6}, q5, 2) =
=0.1 · 1 · 0 = 0;
P({A2, B6}, t3) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 1) ·
({A2, B6}, q5, 3) = = 0.1 · 1 · 1 = 0.1;
P({A2, B6}, t4) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 2) ·
({A2, B6}, q6, 1) = = 0.1 · 0 · 0 = 0;
P({A2, B6}, t5) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 2) ·
({A2, B6}, q6, 2) = = 0.1 · 0 · 0 = 0;
149
P({A2, B6}, t6) =
=
({A2, B6}, q1, 1) ·
({A2, B6}, q2, 2) ·
({A2, B6}, q6, 3) = = 0.1 · 0 · 1 = 0;
P({A2, B6}, t7) =
=
({A2, B6}, q1, 2) ·
({A2, B6}, q3, 1) = 0.2 · 1 = 0.2;
P({A2, B6}, t8) =
=
({A2, B6}, q1, 2) ·
({A2, B6}, q3, 2) ·
({A2, B6}, q7, 1) =
=0.2 · 0 · 0 = 0;
P({A2, B6}, t9) =
=
({A2, B6}, q1, 2) ·
({A2, B6}, q3, 2) ·
({A2, B6}, q7, 2) = = 0.2 · 0 · 0 = 0;
P({A2, B6}, t10) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 1) ·
({A2, B6}, q8, 1) =
=0.7 · 0 · 0 = 0;
P({A2, B6}, t11) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 1) ·
({A2, B6}, q8, 2) = = 0.7 · 0 · 1 = 0;
P({A2, B6}, t12) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 2) ·
({A2, B6}, q9, 1)
({A2, B6}, q10, 1) = 0.7 · 1 · 1
3 · 0 = 0;
P({A2, B6}, t13) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 2) ·
({A2, B6}, q9, 1)
({A2, B6}, q10, 2) = 0.7 · 1 · 1
3 · 1 = 7/30;
P({A2, B6}, t14) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 2) ·
({A2, B6}, q9, 2 )
({A2, B6}, q11, 1) = 0.7 · 1 · 2
3 · 0 = 0;
P({A2, B6}, t15) =
=
({A2, B6}, q1, 3) ·
({A2, B6}, q4, 2) ·
({A2, B6}, q9, 2)
({A2, B6}, q11, 2) = 0.7 · 1 · 2
3 · 1 = 7
15 .
150








, 















-






.

, 


, 












(1), 










[2,1]. 









: 1) 
2) 


= 1, 























= 1, 









, 

= 2, 























= 1, 









, 

















1-




-








0.5
0.5, 




























, 





,


.





, 


: 

= 1
1
2

= 2
1
2























.





, 


: 

= 1
1
2
3
4

= 2
1
2
3
4
:








[4].

4.9.
{




: {
{






:



,









: 




1-




3 






1 
2. 





, 












-






1-

(1-2 
3), 









- 















[
3
. 4.10