Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Yang Fluidization, Solids Handling, and Processing

.pdf
Скачиваний:
83
Добавлен:
15.08.2013
Размер:
20.69 Mб
Скачать

Gas Distributor and Plenum Design 225

momentum. This preferential by-passing of solids causes maldistribution of gas. In addition, the configurations of Figs. 10 (e) and 10 (f) are preferable over the configurations of Figs. 10 (a) and 10 (d).

8.0DESIGN EXAMPLES

8.1FCC Grid Design

Example 1: A 13-m-ID bed of FCC catalyst 3 m deep, is to operate at a superficial gas velocity of 0.6 m/s. The bed density is 480 kg/m3. The density of the gas entering the bed is 0.64 kg/m3. Design the following grid types: (i) a flat perforated plate, and (ii) concentric-ring type downflow sparger. Assume a grid thickness to be 0.025 m.

Solution:

LB = 3.05 m; D = 13 m; Usup = 0.6 m/s; ρB = 480 kg/m3;

ρg,h = 0.64 kg/m3; dp = 60 μm; t = 0.025 m

Perforated Plate Design:

• Determine Pbed and Pgrid

Pbed = g ρ BLB = 9.8× 480 × 3 = 14,112 Pa

Choose Pgrid to be 30% of Pbed

Pgrid = 0.3; Pbed = 4,234 Pa

Determine the gas velocity through the grid holes (assume a typical value for Cd 0.77)

 

2

Pgrid

 

 

 

2 × 4,234

 

 

Uh = Cd

 

 

= 0.77

 

 

 

= 88.6 m/s

 

ρg,h

0.64

 

 

 

 

 

 

 

 

Determine the volumetric gas flow rate at the conditions below the grid. For this example, assume the temperature of the gas below the grid is the same as in the bed. This may not be the case in an actual plant.

 

πD2

 

( )2

Q = U sup

 

=

0.6

π 13

= 79.6 m3 s

 

 

4

 

4

 

226Fluidization, Solids Handling, and Processing

Determine the number of grid holes required

 

 

Q = N

 

π d 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since

 

 

 

 

h

 

U h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N =

Q

 

 

 

1

 

 

=

 

 

79.6

 

1

 

 

=

1.14

 

 

U h

π dh2

88.6

 

π dh2

 

 

dh2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The hole density is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nd =

 

 

 

N

 

=

1.14

 

1

 

=

 

0.0086

 

 

π

 

D2

 

 

 

 

π

(13)2

 

dh2

 

 

 

 

 

 

 

dh2

 

 

 

 

 

4

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Determine the hole pitch

 

 

 

 

 

 

 

 

 

 

 

Lh =

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

= 11.59 d h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nd sin 60°

 

 

 

 

 

 

 

 

 

 

 

Downwardly directed gas sparger:

 

 

 

 

 

• Choose

Pgrid to be 10 % of

 

 

Pbed

 

 

 

 

 

Pgrid

= 0.1

 

 

Pbed

= 1,411 Pa = 14.4 cm H2O

14.4 cm H2O is less than the minimum of 25 cm H2O P

required for a grid. Therefore, use Pgrid = 25 cm H2O = 2,451 Pa

U h

= 0.77

2 × 2451

= 67.4 m/s

0.64

 

 

 

 

 

 

 

 

N =

 

79.6 1

=

1.5

 

 

 

 

 

 

 

 

 

67.4 π d h2

d h2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Gas Distributor and Plenum Design 227

Various combinations of N and dh satisfy the pressure drop requirements for the two grid types as shown in the table below.

dh

Number of holes (N)

m

perforated

downflow

 

plate

sparger

0.005

45,600

60,000

0.01

11,400

15,000

0.025

1,824

2,400

0.05

456

600

To proceed with the design, it is necessary to select a hole size (judgement call). For the purpose of this example, a hole size of 0.025 m will be chosen to compare the different grid types. This hole diameter does not result in an excessive number of holes for either type of grid.

Check the value for Cd ,

N = 13.8 holes/m2

and

L

h

= 0.29 m

d

 

 

 

t0.05

== 2

 

 

d h

 

 

0.025

 

 

 

 

 

æ

L

ö0.1

 

 

From Fig. 3,

 

Cd

ç

h

÷

= 0.98

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

è dh ø

 

 

 

 

 

 

 

 

æ 0.025

ö0 .1

 

C

d

= 0.98

ç

 

÷

= 0.767 vs. 0.77 (initial guess)

 

 

 

 

 

ç

0.29

÷

 

 

 

 

 

è

ø

 

There is a good agreement between the initial and calculated value for Cd . If not, one must repeat the calculations using the calculated Cd until both values agree.

Therefore, for a 0.025-m hole diameter, the perforated plate has 1,824 holes arranged in a triangular pitch of 0.29 m. The hole density is 13.8 holes/m2.

For the sparger grids, it remains to determine the sparger configuration and pipe-header size. Pipe headers can be laid out in various configurations. The design calculations will depend on the configuration one chooses.

228 Fluidization, Solids Handling, and Processing

Concentric-Ring Sparger: Consider for example, a configuration of four concentric rings of 0.4-m diameter supplied by a number of gas entry points.

Sparger Grid - Concentric Ring Type

Ring

Radius

Length

% of

Number

No.

of each

of each

total

of holes

(i)

ring

ring

length

on each

 

(ri), m

(Li)

 

ring (Ni)

 

 

2πri , m

 

 

1

1.43

8.98

9.24

222

2

3.05

19.16

19.73

474

3

4.68

29.41

30.28

727

4

6.30

39.58

40.75

978

total=

 

97.13

 

2,400

This design results in 2,400 holes.

• Determine the hole pitch

97.13

Lh = 2400 = 0.04 m

To determine the header-pipe size, first determine the maximum number of holes in ring section supplied by a single effective entry of gas. If outer most ring is supplied by four gas entry points, then the number of effective gas entry points is 8, and the number of holes in each section of ring No. 4 would be Nh = 978/8 = 122. Then Eq. (13) gives:

æ

2

ö2

 

æ

 

 

2

 

ö

2

ç

Dhead

÷

> 5;

ç

 

 

Dhead

 

÷

> 5

2

 

 

 

2

ç

÷

 

ç

122

´0.025

÷

 

è

Nhdh

ø

 

è

 

ø

 

or Dhead > 0.41 m

Gas Distributor and Plenum Design 229

Summary: For an orifice diameter of 0.025 m, the downwardly directed concentric-ring sparger has 2,400 nozzles placed on four concentric rings. The pitch is 0.04 m. Sometimes the holes are staggered on the sparger pipe. And also, it is a common practice to place two nozzles at a given crosssection as shown in Fig. 7.

Example 2: For the conditions of Example 1 of perforated plate design, estimate the submerged jet height and particle-attrition rate in the fluidized bed.

Solution: Perforated Plate

Uh = 88.6 m/s; ρg,h = 0.64 kg/m3; ρg,b = 0.5 kg/m3;

dh = 0.025 m; N = 1,824; dp = 60 mm; ρp = 1440 kg/m3; emf = 0.42

• Attrition Rate

φ

 

 

 

2.5

π dh2

 

 

 

 

(kg/m/hole) = Ka

(U h

ρg,h

)

 

N

4

 

 

 

 

The attrition-rate constant for 0–50 micron FCC catalyst (from Table) is

 

K

= 2.29 × 10-5

 

 

a

 

 

 

 

 

• Attrition rate per hole

 

φ

= 2.29 ×10-5

(88.6

 

)2.5

π (0.025)2

 

0.64

= 4.75 × 10-4 kg/min/hole

 

 

N

4

 

• Steady-state attrition rate (generation of 0–50 micron fines)

φ = 4.75 × 10-4 × 1,824 = 0.867 kg/min or 1.25 tons/day (0.65% of bed)

Gas jet penetration depth using Merry’s correlation (Eq. 2) for horizontal jets

L

 

 

æ

 

 

ρ U 2

 

ö0.4 æ ρ

g ,b

 

 

ç

 

 

g,h h

 

÷

ç

 

hor

= 5.25

 

 

 

 

 

 

 

 

 

 

 

ρ

 

(1- ε

 

 

 

ρ

 

d

h

 

ç

p

mf

) gd

÷

ç

p

 

 

è

 

 

 

p ø

è

 

 

ö0.2

æ d

ö0.2

÷

ç

 

p

÷

÷

ç

 

 

÷

ø

è d h ø

230 Fluidization, Solids Handling, and Processing

 

æ

 

0.64 ´88.62

ö0.4

æ 0.5

ö0.2

æ

65 ´10-6

ö0.2

 

L = 5.25ç

 

 

 

÷

ç

 

÷

ç

 

÷

´ 0.025 = 0.32 m

 

 

 

 

 

hor

ç

 

 

-6 ÷

ç

 

÷

ç

 

÷

 

è1440(1- 0.42)9.8´ 65 ´10 ø

è1440

ø

è

0.025

ø

 

 

 

From Eq. (1)

Lup 2Lhor

2 × 0.32 0.64 m

 

 

Example 3: For the conditions defined in Example 1 and 2, design a shroud having an ID twice that of the grid hole, i.e., Ds = 2dh = 0.05 m.

Solution: Perforated Plate

The minimum length of the shroud should be:

Lmin =

0.05 - 0.025

= 0.13 m

 

 

2 tan 5.5°

• The gas jet velocity emanating from the shroud is

 

 

 

 

æ d

ö2

 

æ 0.025

ö

2

U

h, s

= U

h,1

ç

 

h

÷ =

88.6

ç

 

÷

= 22.2 m/s

 

 

 

 

 

ç

D ÷

 

ç

0.05

÷

 

 

 

 

 

 

è

ø

 

 

 

 

 

è

 

s ø

 

 

 

 

 

Particle attrition rate will be reduced by a factor calculated from Eq. (16)

particle attrition without shrouds

æ

D ö1.6

 

æ

0.05

ö1.6

 

 

 

= ç

s

÷

=

ç

 

÷

= 3.0

 

 

 

 

particle attrition with shrouds

ç

÷

 

ç

0.025

÷

 

è dh ø

 

è

ø

 

Thus, adding a shroud to the grid reduces the attrition rate to 67% of the rate without a shroud, i.e., attrition rates with and without shrouds are 0.42 and 1.25 ton/day, respectively.

8.2Polyethylene Reactor Grid Design

Example 4: Design a flat, perforated-plate grid for the polyethylene reactor schematically shown in Fig. 11, and calculate the gas jet penetration depth. Use a triangular pitch. System parameters are:

Gas Distributor and Plenum Design 231

Usup = 0.5 m/s; ρg,h = 19.2 kg/m3; ρg,b = 17 kg/m3; ρp = 641 kg/m3; ρB = 272 kg/m3; Pgrid = 0.4 Pbed; dh = 0.01 m; dp = 508 mm; εmf = 0.45; t = 0.019 m

TO COMPRESSOR

7 m

6.1 m

11o 4.6 m

3 m

12.2 m

FLAT PERFORATED

PLATE

ETHYLENE

IN

Figure 11. Schematic of polyethylene reactor

Solution:

 

Determine

Pbed and Pgrid,

Pbed

= g ρBLB = 9.8 × 272 × 12.2 = 32,520 Pa

Pgrid

= 0.4

Pbed = 13,008 Pa

Determine the gas velocity through the grid hole, (trial and error)- assume Cd = 0.8

U

 

= C

2 Pgrid

= 0.8

2 ×13008

= 29.5 m/s

h

 

 

 

d

ρ f

 

19.2

 

 

 

 

 

 

232Fluidization, Solids Handling, and Processing

Determine the volumetric flow rate of gas

 

 

 

 

 

 

 

 

π D2

 

 

 

 

π (4.6)2

 

 

 

Q = Usup

 

 

 

 

=

0.5

 

 

 

 

 

 

= 8.3 m3/s

 

 

 

 

4

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

• Determine the number of grid holes required

N =

 

Q

1

 

 

=

8.3

1

= 3582

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U h

 

 

 

 

π dh2

29.5

π

(0.01)2

 

 

 

 

 

 

 

 

4

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• hole density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nd =

 

 

 

3582

 

 

= 215 holes/m 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

(4.6)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·• Determine the hole pitch

 

 

 

 

 

 

 

 

Lh =

 

 

 

1

 

 

 

 

=

 

 

1

 

 

= 0.073 m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nd sin 60°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

215sin 60°

·Check the value for Cd

 

t

 

=

 

0 .019

 

=

1.9

 

 

 

 

 

 

 

 

 

 

 

d h

 

 

0 .01

 

 

 

 

 

 

 

 

 

 

æ

L

 

ö0.1

 

 

 

From Fig. 3,

C

d

ç

 

h

÷

 

= 0.98

 

 

 

 

 

 

 

 

ç

 

 

÷

 

 

 

 

 

 

 

 

 

 

è dh ø

 

 

 

 

 

 

 

 

 

 

æ

0.01

ö0.1

\

C

= 0.98ç

 

 

 

 

÷

= 0.803 » 0.80 (great guess)

 

 

 

 

 

d

 

 

 

ç

0.073

÷

 

 

 

 

 

 

 

 

è

ø

 

Gas Distributor and Plenum Design 233

Gas jet penetration depth using Merry’s correlation (Eq. 2) for horizontal jets:

L

 

 

æ

 

 

ρ g,hU h2

ö0.4

æ

ρ g,b

hor

= 5.25

ç

 

 

 

 

 

 

÷

ç

 

 

 

 

ρ

 

(1- ε

 

 

 

ρ

 

d

h

 

ç

p

mf

)gd

÷

ç

p

 

 

è

 

 

 

p ø

è

 

ö0.2

æ d

 

ö0.2

÷

ç

 

p

÷

÷

ç

 

 

÷

ø

è dh

ø

 

æ

19.2 ´ 29.52

ö0.4

æ

17

ö0.2

æ

508 ´10- 6

ö

0.2

L = 5.25

ç

 

 

÷

ç

 

÷

ç

 

÷

´ 0.01 = 0.55 m

 

 

 

 

hor

ç

 

-6 ÷

ç

 

÷

ç

 

÷

 

è

641(1- 0.45) 9.8´ 508 ´10

ø

è 641

ø

è

0.01

ø

 

 

 

From Eq. (1) L 2L

hor

2 × 0.55 1.1 m

up

 

 

 

 

 

Coalescence factor

 

 

 

 

λ =

Lh

 

=

 

0.073

= 0.13 < 1

Lup / 2

1.1/ 2

 

 

 

Jets coalesce.

The low value of λ indicates that the bed of solids is probably suspended above the coalesced jets. Therefore, the solids rarely come into contact with the grid. This type of design reduces the chances of grid pluggage due to “sticky” polyethylene solids.

Summary: The perforated plate has 3,582 holes, each of 0.01 m diameter arranged in a triangular pitch of 0.073 m. The hole density is 215 holes/m2.

NOTATIONS

Cd

=

discharge coefficient, see Fig. 1

dh

=

grid hole diameter, m

dp

=

sauter mean particle size, m

D

=

diameter of fluid bed, m

234 Fluidization, Solids Handling, and Processing

Dhead

=

diameter of the main header pipe, m

Dm

=

diameter of the manifold pipe, m

Ds

=

shroud or nozzle diameter, m

g

=

gravitational acceleration 9.8 m/s2

Hhigh

=

elevation of highest grid hole for curved grid, m

Hlow

=

elevation of lowest grid hole for curved grid, m

K= grid pressure-drop coefficient; Eq. (6) for upward gas entry;

0.1for lateral and downward gas entry

Ka

=

attrition-rate constant, Eq. (15)

LB

=

operating bed depth, m

Ldown

=

jet penetration for downwardly directed jet, m

Lh

=

grid hole pitch, cm

Lhor

=

jet penetration for horizontally directed jet, m

Lmin

=

minimum shroud or nozzle length, m

Ls

=

shroud or nozzle length, m

Lup

=

jet penetration for upwardly directed jet, m

N

=

number of grid holes

N

=

number hole density (holes per unit area of the bed), holes/m2

d

 

 

Nh

=

maximum number of holes per manifold pipe section supplied

 

 

by gas entry

Nm

=

number of manifolds on the main header supplied by single as

 

 

entry point

Q

=

total volumetric gas flow entering the grid, m3/s

t

=

grid thickness, m

Uh

=

velocity of gas through the grid hole, m/s

Usup

=

superficial gas velocity, m/s

ρB

=

operating bed density, kg/m3

ρg,b

=

density of gas at bed operating conditions, kg/m3

ρg,h

=

density of gas entering the grid hole (plenum conditions), kg/m3

ρ

=

particle density, kg/m3

p

 

 

εmf

=

voidage at minimum fluidizing conditions, (-)

θ= included angle of a gas jet, degrees

Соседние файлы в предмете Химия