Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.46 Mб
Скачать

C.1 Computation of the Integral Imm1 n

291

for Ke · r = Ksr cos θ, the orthogonality of the associated Legendre functions and the relation Ke · r0l = Ksz0l, we end up with

1,R

16πR3

 

2n + 1

 

 

 

jn

 

 

 

 

ejKsz0l δmm Fn (Ks, ks, R) ,

Imm n =

 

 

 

 

 

 

2

2

 

2

 

where

(ksR) (KsR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

Fn (Ks, ks, R) = (ksR) hn

(2ksR) jn (2KsR)

(KsR) h(1)n (2ksR) (jn (2KsR)) .

1,∞

To compute Imm n we use the stationary point method. Using the inequality Im{Ks} > 0 and the asymptotic expressions of the spherical Hankel functions of the first kind

h(1)n (ksr) =

and

d

(1)

 

 

 

hn

(ksr)

dr

(j)n +1ejksr

ksr

,

= j(j)n +1ejksr , r

1,∞

we see that Imm n vanishes as R→ ∞.

To evaluate Imm1,z n we pass to cylindrical coordinates, integrate over ϕ, and obtain

1,z

 

 

 

 

 

 

2π

 

(1)

 

 

 

 

 

 

 

 

Imm n

=

 

 

 

 

 

 

 

δmm

 

jKshn

(ksr) Pn (cos θ)

k2

K2

 

 

 

 

 

 

 

s

 

s

 

0

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hn (ksr) Pn (cos θ)

 

 

 

 

ρ dρ.

 

 

 

∂z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=−z0l

 

Further, using Kasterin’s representation [228, 258]

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

1

 

(1)

 

 

 

hn (ksr) Pn (cos θ) = (j)

Pn

 

 

 

 

 

 

h0 (ksr)

jks

∂z

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

(ksr) =

 

ejksr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h0

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jksr

 

 

 

 

 

 

 

 

 

 

we find that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,z

2π

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Imm n =

 

 

 

 

(j) δmm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k2

K

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

s

 

 

 

 

 

1 ejks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ2+z2

× 0

 

 

 

jKs

 

 

Pn

 

 

 

 

 

 

 

 

 

ρ dρ.

 

 

 

∂z

 

jks

∂z

 

jks

 

 

 

 

 

 

 

 

 

ρ2 + z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z=−z0l

292 C Computational Aspects in E ective Medium Theory

Performing the integration and using the relation

 

 

 

 

 

 

 

1

 

 

 

 

ejksz

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

ejksz ,

Pn

 

 

 

 

= (

1)n

 

2n + 1

 

 

 

jks ∂z

 

ks2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ks2

2

 

 

 

we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,z

 

 

 

 

 

 

 

 

 

 

 

2n + 1

 

 

 

 

Imm n =

 

 

 

 

 

jn +1

 

 

 

 

 

 

 

 

ejksz0l

δmm .

k2

(K

s

k )

 

2

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final result is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Imm1 n = Imm1,R n + Imm1,z n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16πR3

 

 

 

 

 

 

 

2n + 1

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

jn

 

 

 

 

 

 

 

 

 

 

 

ejKsz0l δmm Fn (Ks, ks, R)

2

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

(ksR) (KsR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

jn +1

 

2n + 1

ejksz0l δmm .

 

 

(C.2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

ks2 (Ks − ks)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.2 Computation of the Integral Imm2 n

The integral Imm2 n is

Imm2 n = [g (rlp) 1] ejKe·r0p u3m −mn (ksrlp) dV (r0p) ,

Dp

where Ke = Ksez , and the domain of integration contains the half-space z0p 0 less a sphere of radius 2R centered at r0l. For a spherical symmetric pair distribution function, g(rlp) = g(rlp), the function g(rlp)1 tends to zero for a few 2R-values. Therefore, if the point r0l is at least several diameters deep in the scattering medium, the volume of integration can be extended to infinity (Fig. C.2). Taking into account that r0p = r0l + rlp, and replacing the variables rlp, θlp and ϕlp by r, θ and ϕ, respectively, we obtain

Imm2 n = ejKe·r0l 2π π ∞ [g(r) 1] ejKe·r h(1)n (ksr) Pn|m −m| (cos θ)

00 2R

×ej(m −m)ϕr2 sin θ dr dθ dϕ .

Using the plane wave expansion (C.1), the orthogonality relations of the associated Legendre functions and the equation Ke · r0l = Ksz0l, we derive

 

n

 

 

 

 

 

 

 

2

2n + 1

e

jKsz0l

 

(1)

2

 

Imm n = 4πj

 

 

 

δmm

2R [g(r) 1] jn (Ksr) hn

(ksr) r

dr.

 

2

 

Changing the variables from r to x = r/(2R), we find that

C.3 Computation of the Terms S11nn and S12nn

293

Op

 

2R

S

 

θlp

 

 

rlp

SR

 

 

Ol

 

R

Fig. C.2. Illustration of the domain of integration bounded by the spherical surface SR and a sphere situated in the far-field region

 

 

2n + 1

 

 

 

Imm2 n = 32πR3jn

 

 

ejKsz0l δmm Gn (Ks, ks, R) ,

(C.3)

2

where

Gn (Ks, ks, R) = [g (2Rx) 1] h(1)n (2ksRx) jn (2KsRx) x2dx.

1

C.3 Computation of the Terms S11nn and S12nn

The terms S11nn

and S12nn are given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

 

+ 1

 

 

 

 

 

 

1

 

 

n

 

 

 

 

1

 

 

 

 

 

S1nn

=

 

(1)

 

 

 

2

 

I1nn n ,

 

 

 

 

n =0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

 

+ 1

 

 

 

 

 

 

2

 

 

n

 

 

 

 

2

 

 

 

 

 

S1nn

=

 

(1)

 

 

 

 

 

I1nn n ,

 

 

 

 

 

 

 

2

 

 

 

 

 

n =0

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I1

=

π π1

(β)π1

(β) + τ 1(β)τ 1

(β) Pn

 

(cos β) sin β dβ,

 

1nn n

 

n

n

 

 

n

 

n

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

I12nn n

= π πn1 (β)τn1 (β) + τn1(β)πn1 (β) Pn

(cos β) sin β dβ.

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

To compute S11nn , we consider the function

 

 

 

 

 

 

 

 

 

fnn (β) = πn1 (β)πn1 (β) + τn1(β)τn1 (β)

(C.4)

294 C Computational Aspects in E ective Medium Theory

for fixed values of the indices n and n . This function can be expanded in terms of Legendre polynomials

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fnn (β) =

 

ann ,n Pn (cos β) ,

 

 

 

 

 

(C.5)

 

 

 

 

n =0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the expansion coe cients are given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ann ,n = π fnn (β)Pn

(cos β) sin β dβ = I11nn n .

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the special value of the Legendre polynomial at β = π,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pn (cos π) = (

 

 

 

1)n

 

2n + 1

,

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we see that (C.5) leads to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)

n

 

 

 

 

 

 

 

1

 

n

 

 

=

 

 

1

 

.

 

fnn (π) =

 

 

 

 

 

 

 

 

 

 

 

I1nn

 

 

 

 

1nn

 

 

 

n =0

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, since

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πn1 (π) =

(1)n−1

 

 

 

 

 

,

 

 

 

 

n(n + 1) (2n + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ 1(π) =

(1)n

 

 

 

 

.

 

 

 

 

 

 

n(n + 1) (2n + 1)

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(C.4) implies that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fnn (π) = snn =

(1)n+n

 

 

 

 

 

(C.6)

n(n + 1) (2n + 1)

n (n

+ 1) (2n + 1)

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and therefore,

S11nn = snn .

Analogously, we find that

S12nn = −snn .

D

Completeness

of Vector Spherical Wave Functions

The completeness and linear independence of the systems of radiating and regular vector spherical wave functions on closed surfaces have been established by Doicu et al. [49]. In this appendix we prove the completeness and linear independence of the regular and radiating vector spherical wave functions on two enclosing surfaces. A similar result has been given by Aydin and Hizal [5] for both the regular and radiating vector spherical wave functions with nonzero divergence, i.e., the solutions to the vector Helmholtz equation.

Before formulating the boundary-value problem for the Maxwell equations we introduce some normed spaces which are relevant in electromagnetic scattering theory. With S being the boundary of a domain Di we denote by [39, 40]

Ctan(S) = {a/a C(S), n · a = 0}

the space of all continuous tangential fields and by

Ctan0(S) = a/a C0(S), n · a = 0 , 0 < α ≤ 1 ,

the space of all uniformly H¨older continuous tangential fields equipped with the supremum norm and the H¨older norm, respectively. The space of uniformly H¨older continuous tangential fields with uniformly H¨older continuous surface divergence ( s) is defined as

0

 

0

(S), s · a C

0

(S)

 

Ctan,d

(S) =

a/a Ctan

 

, 0 < α ≤ 1 ,

while the space of square integrable tangential fields is introduced as

L2tan(S) = a/a L2(S), n · a = 0 .

Now, let S1 and S2 be two closed surfaces of class C2, with S1 enclosing S2 (Fig. D.1). Let the doubly connected domain between S1 and S2 be denoted by Di,1, the domain interior to S2 by Di,2, the domain interior to S1 by Di,

296 D Completeness of Vector Spherical Wave Functions

n1

n2

εi,µi O

Di,2

S2

S1

Di,1

 

Ds

Fig. D.1. The closed surfaces S1 and S2

and the domain exterior to S1 by Ds. We assume that the origin is in Di,2, and denote by n1 and n2 the outward normal unit vectorsto S1 and S2, respectively. The wave number in the domain Di,1 is ki = k0 εiµi, where k0 is the wave number in free space, and εi and µi are the relative permittivity and permeability of the domain Di,1. We introduce the product spaces

Ctan(S1,2) = Ctan(S1) × Ctan(S2),

C0tan(S1,2) = Ctan0(S1) × Ctan0(S2) ,

C0tan,d(S1,2) = Ctan0,d(S1) × Ctan0,d(S2) ,

L2tan(S1,2) = L2tan(S1) × L2tan(S2),

and define the scalar product in L2tan(S1,2) by

- x1

 

y1

.

x2

,

y2

= x1, y1 2,S1 + x2, y2 2,S2 .

 

 

 

2,S1,2

The Maxwell boundary-value problem for the doubly connected domain Di,1 has the following formulation.

Find a solution Ei, Hi C1(Di,1) ∩ C(Di,1) to the Maxwell equations in

Di,1

× Ei = jk0µiHi , × Hi = jk0εiEi,

satisfying the boundary conditions

n1 × Ei = f 1

on

S1 ,

n2 × Ei = f 2

on

S2 ,

where f 1 and f 2 are given tangential vector fields.

Denoting by σ(Di,1) the spectrum of eigenvalues of the Maxwell boundaryvalue problem, we assume that for f 1 Ctan0,d(S1) and f 2 Ctan0,d(S2), both

D Completeness of Vector Spherical Wave Functions

297

Ei and Hi belong to C0(Di,1), and for ki / σ(Di,1), the Maxwell boundaryvalue problem possesses an unique solution.

Theorem 1. Consider Di,1 a bounded domain of class C2 with boundaries S1 and S2. Define the vector potentials

A1(r) = a1(r )g(ki, r, r )dS(r ) ,

S1

A2(r) = a2(r )g(ki, r, r )dS(r )

S2

for a1 L2tan(S1) and a2 L2tan(S2), assume ki / σ(Di,1) and

× × A1 + × × A2 = 0

in Ds and Di,2. Then a1 0 on S1 (a1 vanishes almost everywhere on S1), and a2 0 on S2.

Proof. Defining the electromagnetic fields

j

E = k0εi ( × × A1 + × × A2) ,

j

H = k0µi × E = × A1 + × A2,

passing to the boundary along a normal direction and using the jump relations for the curl of a vector potential with square integrable density [49], we find that

0 = lim

n1 × H (· + hn1 (·))

 

 

 

 

 

h 0+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

1

 

"

− n1 × ×

S1 a1(r )g(ki, ·, r )dS(r ) +

 

a1

 

2

 

 

 

 

 

 

a (r )g(k ,

, r )dS(r )

=

 

 

 

n

× ×

 

 

=

 

 

 

1

 

 

 

2

 

i ·

 

=

 

 

 

 

 

 

 

S2

 

 

 

 

 

=2,S1

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = h 0+

 

n

2 × H

· −

hn

2

·

 

 

 

 

 

lim

 

 

(

 

 

 

( ))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

1

 

"

− n2 × ×

S2 a2(r )g(ki, ·, r )dS(r )

 

a2

 

2

 

 

 

 

 

 

a (r )g(k ,

, r )dS(r )

=

 

 

 

n

× ×

 

 

= .

 

2

 

 

 

1

 

i ·

 

=

 

 

 

 

 

 

 

S1

 

 

 

 

 

=2,S2

 

298 D Completeness of Vector Spherical Wave Functions

Defining the operators

 

 

 

 

 

(M11a) (r) = n1 (r) × × S1 a(r )g(ki, r, r )dS(r ) , r S1,

 

 

 

(M12a) (r) = n1(r) × × S2 a(r )g(ki, r, r )dS(r ) , r S1 ,

and

 

 

 

 

 

(M21a) (r) = n2(r) × × S1 a(r )g(ki, r, r )dS(r ) , r S2 ,

 

 

 

(M22a) (r) = n2(r) × × a(r )g(ki, r, r )dS(r ) , r S2 ,

S2

we obtain

1

2 I + M11 a1 + M12a2 = 0,

almost everywhere on S1, and

 

1

 

 

−M21a1 +

 

I − M22

a2 = 0,

2

almost everywhere on S2. Note that M11 and M22 are the singular magnetic operators on the surfaces S1 and S2, respectively, while M12 and M21 are nonsingular operators. In compact operator form, we have

 

 

 

a + Ka = 0,

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

a =

a1

 

 

 

2

11

2

M

12

 

 

 

and =

M

 

 

 

.

 

a2

 

K

 

− M

 

M

22

 

 

 

 

2

21

2

 

 

 

The above integral equation is a Fredholm integral equation of the second kind,

and according to Mikhlin [161] we find that a a0 Ctan(S1,2). Noticing that the operator K map Ctan(S1,2) into C0tan(S1,2) and C0tan(S1,2) into C0tan,d(S1,2),

0

 

 

a10

 

we see that a a0 Ctan,d

(S1,2), where a0

=

a20

. The properties of the

vector potentials with uniformly H¨older continuous densities, then yields E, H C0(Di,1). The jump relations for the double curl of the vector potentials A1 and A2 [49], give n1 × E= 0 on S1, and n2 × E+ = 0 on S2. Therefore, E and H solve the homogeneous Maxwell boundary-value problem, and since ki / σ(Di,1), it follows that E = H = 0 in Di,1. Finally, from the jump relations (for continuous densities)

n1 × H+ − n1 × H= a10 = 0,

D Completeness of Vector Spherical Wave Functions

299

and

n2 × H+ − n2 × H= a20 = 0,

we obtain a1 0 on S1, and a2 0 on S2.

The following theorems state the completeness and linear independence of the system of regular and radiating spherical vector wave functions on two enclosing surfaces.

Theorem 2. Let S1 and S2 be two closed surfaces of class C2, with S1 enclosing S2, and let n1 and n2 be the outward normal unit vectors to S1 and S2, respectively. The system of vector functions

# $ n1 × M mn3

% ,

$ n1 × N mn3

% ,

$ n1 × M mn1

% ,

$ n1 × N mn1

% ,

n2 × M mn3

 

n2 × N mn3

 

n2 × M mn1

 

n2 × N mn1

 

 

 

 

 

+

 

 

 

n = 1, 2, . . . , m = −n, . . . , n/ki / σ (Di,1)

is complete in L2tan(S1,2).

Proof. It is su cient to show that for a =

a1

 

2

a2

 

Ltan(S1,2), the set of

closure relations

 

 

 

 

 

 

S1 a1 · n1 × M mn3

dS + S2 a2 · n2 × M mn3 dS = 0,

 

3

 

 

 

 

3

S1 a1

· n1 × N mn dS +

S2 a2

· n2 × N mn dS = 0,

and

 

 

 

 

 

 

S1 a1 · n1 × M mn1

dS + S2 a2 · n2 × M mn1 dS = 0,

 

1

 

 

 

 

1

S1 a1

· n1 × N mn dS +

S2 a2

· n2 × N mn dS = 0

for n = 1, 2, . . ., and m = −n, . . . , n, yields a1 0 on S1, and a2 0 on S2. As in the proof of Theorem 1, we consider the vector potentials A1 and A2 with densities a1 = n1 × a1, and a2 = n2 × a2, respectively, and define the vector field

j

E = k0εi ( × × A1 + × × A2).

Restricting r to lies inside a sphere enclosed in S2 and using the vector spheri-

cal wave expansion of the dyad gI, we see that the first set of closure relations gives E = 0 in Di,2. Analogously, but restricting r to lies outside a sphere enclosing S1, we deduce that the second set of closure relations yields E = 0 in Ds. Theorem 1 can now be used to conclude.

300 D Completeness of Vector Spherical Wave Functions

Theorem 3. Under the same assumptions as in Theorem 2, the system of vector functions

# $ n1 × M mn3

% ,

$ n1 × N mn3

% ,

$ n1 × M mn1

% ,

$ n1 × N mn1

% ,

n2 × M mn3

 

n2 × N mn3

 

n2 × M mn1

 

n2 × N mn1

 

 

 

 

 

+

 

 

 

n = 1, 2, . . . , m = −n, . . . , n/ki / σ (Di,1)

is linearly independent in L2tan(S1,2).

Proof. We need to show that for any Nrank, the relations

Nrank

n

$

3

%

$

3

%

 

αmn

 

n1 × M mn

+ βmn

n1 × N mn

 

 

n=1 m=−n

 

n2 × M mn3

 

n2 × N mn3

 

 

+γmn

$ n1 × M mn1 % + δmn $ n1 × N mn1

% = 0 ,

$ on

S1 %

 

n2 × M mn1

n2 × N mn1

 

on

S2

give αmn = βmn = γmn = δmn = 0, for n = 1, 2, . . . , Nrank and m = −n, . . . , n. Defining the electromagnetic field

Nrank n

E = αmnM 3mn + βmnN 3mn + γmnM 1mn + δmnN 1mn, n=1 m=−n

we see that n1 × E = 0 on S1 and n2 × E = 0 on S2. The uniqueness of the Maxwell boundary-value problem then gives E = 0 in Di,1, and since E is an analytic function we deduce that E = 0 in Di −{0}. Using the representations for the vector spherical wave functions M 1mn,3 and N 1mn,3 in terms of vector spherical harmonincs mmn and nmn, and the fact that the system of vector spherical harmonics is orthogonal on the unit sphere, we obtain

αmnh(1)n (kir) + γmnjn (kir) = 0,

βmn kirh(1)n (kir) + δmn [kirjn (kir)] = 0,

for r > 0. Taking into account the expressions of the spherical Bessel and Hankel functions for small value of the argument

jn(x) =

 

 

xn

1 + O x2

 

 

 

 

 

 

 

(2n + 1)!!

 

and

 

 

 

 

 

 

 

 

h(1)

(x) =

j

(2n − 1)!!

1 + O x2

,

n

 

 

xn+1

 

Соседние файлы в предмете Оптика