Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.46 Mб
Скачать

260 A Spherical Functions

The following orthogonality relations are important for solving scattering problems:

π

Pnm(cos θ)Pnm(cos θ) sin θ dθ = δnn ,

0

π

τnm(θ)τnm(θ) + m2πnm(θ)πnm (θ) sin θ dθ = n(n + 1)δnn ,

0

π

[πnm(θ)τnm(θ) + τnm(θ)πnm (θ)] sin θ dθ = 0.

0

For negative arguments we have the symmetry relation

Pnm(cos θ) = (1)n−mPnm(cos θ)

and consequently,

πm (π

θ) = (

1)n−mπm(θ),

(A.24)

n

n

 

τ m (π

θ) = (

1)n−m+1τ m(θ).

(A.25)

n

n

 

B

Wave Functions

In this appendix, we summarize the basic properties of the characteristic solutions to the scalar and vector wave equations. We recall the integral and orthogonality relations, and the addition theorems under coordinate rotations and translations.

B.1 Scalar Wave Functions

The spherical wave functions form a set of characteristic solutions to the Helmholtz equation and are given by [215]

u1mn,3 (kr) = zn1,3 (kr) Pn|m| (cos θ) ej,

where n = 0, 1, . . . ,, m = −n, . . . , n, (r, θ, ϕ) are the spherical coordinates of the position vector r, zn1 designates the spherical Bessel functions jn, zn3 stands for the spherical Hankel functions of the first-order h(1)n , and Pn|m| denotes the normalized associated Legendre functions. u1mn is an entire solution to the Helmholtz equation (solution which are defined in all of R3) and u3mn is a radiating solution to the Helmholtz equation in R3 − {0}.

The Green function or the fundamental solution is defined as

g (k, r, r ) =

ejk|r−r |

,

r = r

 

 

|

r

r

|

 

 

 

4π

 

 

 

and straightforward di erentiation shows that for fixed r R3, the fundamental solution satisfies the Helmholtz equation in R3 − {r }. The expansion of the Green function in terms of spherical wave functions is given by

 

jk

∞ n

# u3

(kr ) u1

(kr) ,

r < r

g (k, r, r ) =

 

−mn

mn

 

 

 

 

 

 

 

2π n=0 m=−n

u1 mn (kr ) umn3

(kr) ,

r > r .

262 B Wave Functions

The spherical harmonics are defined as

Ymn (θ, ϕ) = Pn|m| (cos θ) ej

and they satisfy the orthogonality relation

2π π

Ymn (θ, ϕ) Ym n (θ, ϕ) sin θ dθ dϕ = 2πδm,−m δnn .

00

The spherical wave functions can be expressed as integrals over plane waves [26, 70, 215]

umn1 (kr) =

 

1

 

2π π Ymn (β, α) ejk(β,α)·r sin β dβ dα

(B.1)

 

4πjn

 

 

 

0 0

 

and

 

 

 

 

 

 

umn3 (kr) =

 

1

2π π2 jYmn (β, α) ejk(β,α)·r sin β dβ dα,

(B.2)

2πjn

 

0

0

 

where (k, β, α) are the spherical coordinates of the wave vector k. We note that (B.2) is valid for z > 0 since only then the integral converges.

The spherical wave expansion of the plane wave exp(jk ·r) is of significant importance in electromagnetic scattering and is given by [215]

∞ n

 

 

P (k, β, α, r) = ejk(β,α)·r =

2jnY−mn (β, α) umn1 (kr).

(B.3)

n=0 m=−n

 

 

The quasi-plane waves have been introduced by Devaney [46], and for z > 0, they are defined as

2π π j

Q(k, β, α, r) = 2 (β, α, β , α )ejk (β ,α )·r sin β dβ dα ,

00

where

 

1

∞ n

(β, α, β , α ) =

Y−mn (β, α) Ymn (β , α ) .

 

 

2π n=0 m=−n

If β and β belong to [0, π], the expression of simplifies to

(β, α, β , α ) = δ(cos β − cos β)δ(α − α).

As in (B.3), the expansion of quasi-plane waves in terms of radiating spherical wave functions is given by

∞ n

 

Q(k, β, α, r) = jnY−mn (β, α) umn3 (kr).

(B.4)

n=0 m=−n

 

B.1 Scalar Wave Functions

263

The function allows to formally analytically continue a function f (β, α), defined for real β, onto the complex values of β. In particular we see that

2π π

f (β, α) =

f (β , α ) (β, α, β , α ) sin β dβ dα ,

0

0

where β can assume all values lying on the contour [0, π2 j), and therefore

2π π2 j

f (β, α)ejk(β,α)·r sin β dβ dα

00

2π π

=

f (β, α)Q(k, β, α, r) sin β dβ dα,

(B.5)

00

where we have used the definition of Q. In view of (B.2) and (B.5), we deduce that the integral representation for the radiating spherical wave functions is given by

u3

(kr) =

1

2π π Y (β, α) Q(k, β, α, r) sin β dβ dα.

(B.6)

 

mn

 

2πjn

mn

 

 

 

0 0

 

In the far-field region, a plane wave can be expressed as a superposition of incoming and outgoing spherical waves. To derive this expression, we start with the series representation (B.3) written as

∞ n

2jnjn(kr)Y−mn (β, α) Ymn(θ, ϕ),

P (k, β, α, r) = ejk(β,α)·r =

n=0 m=−n

 

use the asymptotic behavior of the spherical Bessel functions for large values of the argument

 

1

 

 

 

 

 

 

 

 

 

jn (kr) =

 

sin

kr −

 

 

 

 

 

 

 

kr

2

 

 

 

 

 

 

=

1

 

j(kr

2 )

e

j(kr

2

)

 

2jkr

e

 

 

 

 

 

 

, kr → ∞

take into account the completeness relations for spherical harmonics,

δ (er − ek ) = δ(ϕ − α)δ(cos θ − cos β)

 

1

n

 

 

=

Y−mn (β, α) Ymn (θ, ϕ) ,

 

 

2π n=0 m=−n

 

 

δ (er + ek ) = δ [(π + ϕ) − α] δ [cos (π − θ) cos β]

 

1

n

 

 

 

 

n

 

=

 

 

(1)

 

Y−mn (β, α) Ymn (θ, ϕ) ,

2π

 

 

 

 

n=0 m=−n

 

 

264 B Wave Functions

where er and ek are the unit vectors in the directions of r and k, respectively, and obtain

ejk·r =

2π

δ (er

ek ) ejkr

δ (er + ek ) ejkr

, kr

→ ∞

.

 

 

jkr

 

 

 

 

The vector spherical harmonics are defined as [175, 228, 229]

m

 

(θ, ϕ) =

1

 

j|m|(θ)e

θ

τ |m|(θ)e

ej,

 

 

 

 

 

mn

 

2n(n + 1)

n

 

 

n

 

ϕ

n

 

(θ, ϕ) =

1

 

τ |m|(θ)e

 

+ j|m|e

ej,

 

 

 

 

 

 

mn

 

2n(n + 1)

n

θ

 

 

n

ϕ

 

(B.7)

(B.8)

(B.9)

where (er , eθ , eϕ) are the spherical unit vectors of the position vector r, and we have er × mmn = nmn and er × nmn = −mmn. We omit the third vector spherical harmonics

1

pmn(θ, ϕ) = 2n(n + 1) Ymn(θ, ϕ)er

since it will be not encountered in our analysis. The orthogonality relations for vector spherical harmonics are

2π π

0

0

mmn(θ, ϕ) · mm n (θ, ϕ) sin θ dθ dϕ

 

=

2π π

nmn(θ, ϕ) · nm n (θ, ϕ) sin θ dθ dϕ = πδm,−m δnn ,

(B.10)

0

0

and

2π π

 

 

 

 

 

 

mmn(θ, ϕ) · nm n (θ, ϕ) sin θdθ dϕ = 0 .

(B.11)

 

 

0

0

 

The system of vector spherical harmonics is orthogonal and complete in L2tan() (the space of square integrable tangential fields defined on the unit sphere ) and in terms of the scalar product in L2tan() we have

2π π

0

0

mmn(θ, ϕ) · mm n (θ, ϕ) sin θ dθ dϕ

 

2π π

 

 

 

 

 

 

 

=

 

nmn(θ, ϕ)

·

nm

 

n

 

(θ, ϕ) sin θ dθ dϕ = πδmm δnn

(B.12)

0

 

0

 

 

 

 

and

2π π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mmn(θ, ϕ) · nm n (θ, ϕ) sin θ dθ dϕ = 0.

(B.13)

00

B.2 Vector Wave Functions

265

We define the vector spherical harmonics of leftand right-handed type as

1

lmn(θ, ϕ) = [mmn(θ, ϕ) + jnmn(θ, ϕ)] 2

 

 

j

 

m

 

m

 

=

 

 

|

 

|(θ) + τ |

 

|(θ)

 

 

 

 

 

2 n(n + 1)

n

n

 

and

1

rmn(θ, ϕ) = [mmn(θ, ϕ) jnmn(θ, ϕ)] 2

 

 

j

 

m

 

 

 

m

 

=

 

 

|

 

|(θ)

τ |

 

|(θ)

 

 

 

 

 

2 n(n + 1)

n

 

n

 

(B.14)

(eθ + jeϕ)ej

(B.15)

(eθ jeϕ)ej,

respectively, and it is straightforward to verify the orthogonality relations

2π π

0

0

lmn(θ, ϕ) · lm n (θ, ϕ) sin θ dθ dϕ

 

2π π

 

 

 

 

 

 

=

 

rmn(θ, ϕ)

·

rm

 

n

(θ, ϕ) sin θ dθ dϕ = πδmm δnn

(B.16)

0

 

0

 

 

 

 

and

2π π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lmn(θ, ϕ) · rm n (θ, ϕ) sin θ dθ dϕ = 0.

(B.17)

00

Since lmn and rmn are linear combinations of mmn and nmn, we deduce that the system of vector spherical harmonics of leftand right-handed type is also orthogonal and complete in L2tan().

B.2 Vector Wave Functions

The independent solutions to the vector wave equations can be constructed as [215]

M mn1,3 (kr) =

 

1

umn1,3 (kr) × r,

 

 

2n(n + 1)

N mn1,3 (kr) =

1

× M mn1,3 (kr),

 

k

where n = 1, 2, ..., and m = −n, ..., n. The explicit expressions of the vector spherical wave functions are given by

266 B Wave Functions

M 1,3

(kr) =

1

 

z1,3(kr) j|m| (θ) e

θ

τ |m| (θ) e

ej,

 

 

 

 

mn

 

 

2n(n + 1) n

 

 

 

 

n

 

 

n

 

 

ϕ

N 1,3

(kr) =

1

 

!n(n + 1)

zn1,3(kr)

P |m|(cos θ)e

 

 

 

 

 

 

 

 

 

mn

 

 

2n(n + 1)

 

 

 

 

kr

n

 

r

 

 

 

 

 

 

krz1,3(kr)

 

 

 

 

 

 

 

 

 

+

 

 

 

 

+

 

n

τ |m|(θ)e

θ

+ j|m|(θ)e

 

ej,

 

 

 

 

 

 

 

 

 

 

kr

n

 

 

n

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

krzn1,3(kr)

=

d

krzn1,3(kr) .

 

 

 

 

 

 

 

 

 

 

 

 

 

d (kr)

 

 

 

The superscript ‘1’ stands for the regular vector spherical wave functions while the superscript ‘3’ stands for the radiating vector spherical wave functions. It

is useful to note that for n = m = 0, we have M 100,3 = N 100,3 = 0. M 1mn, N 1mn is an entire solution to the Maxwell equations and M 3mn, N 3mn is a radiating

solution to the Maxwell equations in R3 − {0}.

The vector spherical wave functions can be expressed in terms of vector spherical harmonics as follows:

M mn1,3 (kr) = zn1,3(kr)mmn(θ, ϕ),

 

 

 

 

 

 

 

 

 

 

(kr)

 

 

n(n + 1)

 

z1,3(kr)

 

krz1,3

N mn1,3 (kr) =

 

 

 

n

Ymn (θ, ϕ) er +

n

 

nmn(θ, ϕ),

 

 

kr

 

 

2

 

 

 

kr

In the far-field region, the asymptotic behavior of the spherical Hankel functions for large value of the argument yields the following representations for the radiating vector spherical wave functions [40]:

3

ejkr !

n+1

 

 

 

1

 

"

M mn(kr) =

 

 

(j)

 

mmn(θ, ϕ) + O

 

 

 

 

, r → ∞,

kr

 

 

 

r

3

ejkr !

 

n+1

 

 

1

"

N mn(kr) =

 

 

j (j)

 

 

nmn(θ, ϕ) + O

 

 

 

 

, r → ∞.

kr

 

 

 

 

 

r

The orthogonality relations on a sphere Sc, of radius R, are

[er × M mn(kr)] · [er × M m n (kr)] dS(r) = πR2zn2 (kR)δm,−m δnn ,

Sc

 

[er

×

N mn(kr)]

·

[er

×

N m n (kr)] dS(r) = πR2

!

[kRzn(kR)]

"2

 

kR

Sc

 

 

 

 

 

×δm,−m δnn ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.2 Vector Wave Functions

267

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[er

×

M mn(kr)]

·

[er

×

N m n (kr)] dS(r) = 0,

 

Sc

 

 

 

 

 

 

 

and we also have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[er

×

M mn(kr)]

·

N m n (kr)dS (r)

 

 

Sc

 

 

 

 

 

 

 

 

=

 

 

 

[er

×

N mn(kr)]

·

M m n (kr)dS (r)

 

 

 

Sc

 

 

 

 

 

 

 

 

 

 

 

= πR2zn(kR)

[kRzn(kR)]

δm,−m δnn

(B.18)

 

 

 

 

kR

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

M mn(kr)]

·

M m n (kr)dS (r)

 

 

Sc

 

 

 

[er

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

·

 

 

 

 

 

=

Sc

[er

N mn(kr)]

N m n (kr)dS (r) = 0.

(B.19)

 

 

 

 

The spherical vector wave expansion of the dyad gI is of basic importance in our analysis and is given by [175, 228, 229]

g(k, r, r )

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 3

 

(kr )M 1

(kr) + N 3

 

(kr

 

 

 

 

 

mn

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

jk

n

 

+Irrotational terms ,

r < r

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

M 1

 

(kr )M 3

(kr) + N 1

 

(kr

 

 

 

 

mn

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+Irrotational terms ,

r > r

 

 

 

 

 

 

 

 

)N 1mn(kr)

(B.20)

)N 3mn(kr)

Using the calculation rules for dyadic functions and the identity ag = a · gI, we find the following simple but useful expansions

×

[a(r )g(k, r, r )]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a(r )

·

M

3

 

 

(kr ) N 1

(kr)

 

 

 

 

 

 

 

 

 

 

−mn

 

mn

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

3

 

 

 

1

 

 

 

 

2

 

+ a(r ) N mn(kr ) M mn(kr) , r < r

jk

 

 

 

 

 

 

·

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

(B.21)

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

a(r )

·

M

1

 

 

(kr ) N 3

(kr)

 

 

 

 

 

 

 

 

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ a(r )

 

N

1

 

(kr ) M

3

(kr) , r > r

 

 

 

 

 

 

 

·

−mn

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

268 B Wave Functions

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× ×

[a(r )g(k, r, r )]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a(r )

 

 

 

3

 

 

(kr ) M 1

 

(kr)

 

 

 

 

 

 

 

·

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−mn

 

mn

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

3

 

 

1

 

 

 

 

3

 

 

 

+ a(r ) N mn(kr ) N mn(kr) , r < r

 

jk

 

 

 

 

 

 

 

 

 

·

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

(B.22)

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

a(r )

·

M

1

 

 

(kr ) M 3

 

(kr)

 

 

 

 

 

 

 

 

 

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ a(r )

 

N

1

 

(kr ) N

3

(kr)

, r > r

 

 

 

 

 

 

 

·

−mn

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relying on these expansions and using the Stratton–Chu representation theorem, orthogonality relations of vector spherical wave functions on arbitrarily closed surfaces can be derived. Let Di be a bounded domain with boundary S and exterior Ds, and let n be the unit normal vector to S directed into Ds. The wave number in the domain Ds is denoted by ks, while the wave number in the domain Di is denoted by ki. For r Di, application of Stratton–Chu representation theorem to the vector fields Es(r) = M 3mn(ksr)

and Hs(r) = j εssN 3mn(ksr) gives

 

 

 

3

 

M 3

 

 

 

3

 

N 3

 

n

×

M

 

−m n

+ n

×

N

 

−m n

dS = 0,

S

 

mn ·

N 3

 

 

mn ·

M 3

 

 

 

 

 

−m n

 

 

 

 

 

−m n

 

(B.23)

while for r Ds, yields

jks2

 

 

3

 

M 1

 

 

 

3

 

N 1

 

 

 

 

n

×

M

 

 

−m n

+ n

×

N

 

 

−m n

dS

 

π

 

 

 

S

 

mn

·

N 1

 

 

mn ·

M 1

 

 

 

 

 

 

 

 

−m n

 

 

 

 

 

−m n

 

 

0

 

 

 

 

 

 

 

 

 

 

 

(B.24)

=

 

δmm δnn

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, for r Ds, vector fields Ei(r) =

n × M 1mn

S

the Stratton–Chu representation theorem applied to the

M 1

(k r) and H

(r) =

j

ε

N 1

(k

r) leads to

mn

i

i

 

 

 

i

i

mn

i

 

M

1

 

 

N 1

 

N 1

 

 

−m n

+ n

×

 

 

 

−m n

 

dS = 0.

· N 1 m n

 

mn

·

 

M 1 m n

 

 

(B.25) The regular and radiating spherical vector wave functions can be expressed as integrals over vector spherical harmonics [26]

1

1

2π π

(j) mmn (β, α) e

jk(β,α)

r

sin β dβ dα,

M mn(kr) =

 

 

 

 

 

·

 

4πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

(B.26)

1

1

2π π

nmn (β, α) e

jk(β,α)

r

sin β dβ dα,

N mn(kr) =

 

 

 

 

·

 

4πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

(B.27)

B.2 Vector Wave Functions

269

and

3

1

2π π2 j

 

 

jk(β,α)

r

 

M mn(kr) =

 

 

 

(j) mmn (β, α) e

 

 

·

 

sin β dβ dα,

2πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

(B.28)

3

1

2π π2 j

 

jk(β,α)

r

 

 

 

N mn(kr) =

 

 

 

nmn (β, α) e

 

·

 

sin β dβ dα

2πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

(B.29)

for z > 0, respectively.

The above system of vector functions is also known as the system of localized vector spherical wave functions. Another system of vector functions which is suitable for analyzing axisymmetric particles with extreme geometries is the system of distributed vector spherical wave functions [49]. For an axisymmetric particle with the axis of rotation along the z-axis, the distributed vector spherical wave functions are defined as

1,3

1,3

[k(r − znez )] ,

 

Mmn(kr) = M m,|m|+l

 

1,3

1,3

[k(r − znez )] ,

(B.30)

Nmn(kr) = N m,|m|+l

where {zn}n=1 is a dense set of points on the z-axis (Fig. B.1), ez is the unit vector in the direction of the z-axis, n = 1, 2, ..., m Z, and l = 1 if m = 0 and l = 0, if m = 0. M1mn, Nmn1 is an entire solution to the Maxwell equations and M3mn, Nmn3 is a radiating solution to the Maxwell equations in R3 − {znez }. In the case of prolate scatterers, the distribution of the poles on the axis of rotation adequately describes the particle geometry. In contrast, it is clear from physical considerations that this arrangement is not suitable for oblate scatterers. In this case, the procedure of analytic continuation of the vector fields onto the complex plane along the source coordinate zn can be used

 

z

 

 

 

 

r-znez

M

 

zn

 

 

r

y

 

O

 

 

 

x

z2

Γ (support of DS)

 

z1

 

 

Fig. B.1. Sources distributed on the z-axis

Соседние файлы в предмете Оптика