Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.46 Mб
Скачать

2.1 Homogeneous and Isotropic Particles

99

testing functions are defined and the scalar product of each testing function is formed with both sides of the equation being solved. This results in a system of equations which is referred to as the element matrix equations. The element matrices are assembled into the global matrix of the entire “structure” and the resulting system of equations is solved for the unknown expansion coe cients.

2.1.6 Spherical Particles

An interesting feature of the null-field method is that all matrix equations become considerably simpler and reduce to the corresponding equations of the Lorenz–Mie theory when the particle is spherically. For a spherical particle of radius R, the orthogonality relations of the vector spherical harmonics show that the Qpq matrices are diagonal

 

 

 

 

 

(Qpq )12

 

 

= (Qpq )21

 

 

= 0

 

 

 

 

 

 

 

 

 

 

 

mn,m1n1

 

 

 

 

mn,m1n1

 

 

 

 

 

 

for all values of m, n, m1 and n1, and

 

 

 

 

 

 

 

 

 

 

Q

31

11

!

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

mn,m1n1 = jx

jn (mrx)

xhn

(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− hn(1) (x) [mrxjn (mrx)] δmm1 δnn1 ,

 

 

31

 

22

 

 

jx

 

 

(1)

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

mn,m1n1

=

 

 

 

 

 

−hn (x) [mrxjn (mrx)]

 

 

 

 

 

 

mr

 

 

 

 

 

 

 

 

 

 

2

j

 

(m

 

 

(1)

"

δ

 

δ

 

,

 

 

 

 

 

 

 

+ m

n

x) xh (x)

mm1

nn1

 

 

 

 

 

 

 

 

 

 

r

 

 

r

 

 

n

 

 

 

 

33

 

11

!

(1)

 

 

 

 

(1)

 

 

 

 

 

 

Q

 

 

mn,m1n1

= jx hn

 

(mrx) xhn

(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

(1)

 

"

 

 

 

 

 

 

 

 

 

 

− hn

 

(x) mrxhn

 

(mrx)

δmm1 δnn1 ,

33

 

22

 

jx !

 

 

 

(1)

 

 

 

(1)

 

 

 

 

 

 

Q

 

 

mn,m1n1

=

 

 

−hn (x)

mrxhn

(mrx)

 

 

 

 

 

mr

 

 

 

 

 

 

 

 

 

2

 

(1)

 

 

 

 

(1)

"

 

 

 

 

 

 

 

 

 

 

+ mr hn

 

(mrx) xhn (x)

δmm1 δnn1 ,

Q11 11

= jx jn (mrx) [xjn (x)]

 

 

 

 

 

 

 

 

 

 

 

mn,m1n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− jn (x) [mrxjn (mrx)] δmm1 δnn1 ,

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

100 2 Null-Field Method

Q11 22

=

 

jx

 

jn (x) [mrxjn (mrx)]

 

 

 

 

mr

 

 

 

 

 

mn,m1n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ mr2jn (mrx) [xjn (x)] δmm1 δnn1 ,

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q13 11

= jx hn(1) (mrx) [xjn (x)]

 

 

 

 

 

 

 

mn,m1n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

"

 

 

 

 

 

 

 

− jn (x) mrxhn (mrx)

δmm1 δnn1 ,

 

13

22

 

jx !

 

 

 

 

(1)

 

 

 

 

 

Q

 

mn,m1n1

=

 

 

−jn (x)

mrxhn (mrx)

 

 

 

 

mr

 

 

 

 

 

 

+ m2h(1)

(m

x) [xj

(x)] δ

mm1

δ

nn1

,

 

 

 

 

 

 

 

r

n

r

 

n

 

 

 

where x = ksR is the size parameter and

mr =

εi

εs

(2.35)

(2.36)

(2.37)

is the relative refractive index of the particle with respect to the ambient medium. The above relations are not suitable for computing the Qpq matrices. Denoting by An and Bn the logarithmic derivatives [2, 17]

An(x) =

d

{ln [xjn (x)]} =

[xjn (x)]

 

 

 

 

 

,

 

 

dx

xjn(x)

 

 

 

 

 

 

(1)

 

 

Bn(x) =

d

ln xhn(1) (x) =

 

xhn (x)

 

,

dx

 

 

 

 

 

 

 

 

xhn(1)(x)

and using the recurrence relation (cf. (A.8))

[xzn (x)] = xzn−1(x) − nzn(x) ,

where zn stands for jn

Q31 11 mn,m1n1

Q31 22 mn,m1n1

or h(1)n , we rewrite (2.30)–(2.37) as

2

 

 

 

 

 

n

(1)

 

= jx

jn

(mrx) mrAn (mrx) +

 

 

hn

(x)

x

(1)

 

 

 

 

 

 

 

 

 

 

(2.38)

− hn−1 (x)

δmm1 δnn1 ,

 

 

 

 

 

 

 

2

 

 

! An (mrx)

 

 

n

 

(1)

 

= jmrx

jn (mrx)

 

 

+

 

hn

(x)

 

mr

x

(1)

 

 

 

 

 

 

 

 

 

(2.39)

− hn−1

(x)

δmm1 δnn1 ,

 

 

 

 

 

 

2.1 Homogeneous and Isotropic Particles

33

 

 

11

 

 

 

 

 

2

 

(1)

 

 

 

 

 

 

 

 

n

(1)

 

Q

 

 

mn,m1n1

= jx

hn

(mrx)

mrBn (mrx) +

 

 

 

 

 

 

 

 

 

hn

(x)

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− hn−1

(x) δmm1 δnn1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q33 22

=

jmrx2h(1)

(mrx)

!

Bn (mrx)

 

 

+

 

n

h(1)

(x)

 

 

 

 

 

 

 

 

 

mn,m1n1

 

 

 

 

 

 

 

n

 

 

 

 

mr

 

 

 

 

 

 

x

n

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− hn−1 (x) δmm1 δnn1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

11

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

n

 

 

Q

 

 

 

 

mn,m1n1

 

= jx

jn (mrx)

mrAn (mrx) +

 

 

 

 

 

 

 

 

 

jn (x)

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

− jn−1 (x)} δmm1 δnn1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

! An (mrx)

n

 

Q11

mn,m1n1

= jmrx2jn

(mrx)

 

 

 

 

+

 

 

 

 

 

 

jn (x)

 

 

mr

 

x

 

 

 

 

 

 

 

 

 

 

− jn−1 (x)} δmm1 δnn1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

11

 

 

 

 

 

2

 

(1)

 

 

 

 

 

 

 

 

 

 

n

 

Q

 

 

 

mn,m1n1

= jx

 

hn (mrx)

mrBn (mrx) +

 

 

 

 

 

 

jn (x)

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

− jn−1 (x)} δmm1 δnn1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q13 22

=

jmrx2h(1) (mrx) !

Bn (mrx)

+

n

jn (x)

 

 

 

 

 

 

 

mn,m1n1

 

 

 

 

 

 

 

n

 

 

 

 

mr

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

− jn−1 (x)} δmm1 δnn1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The functions An and Bn satisfy the recurrence relation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ψn(x) =

n + 1

 

1

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

Ψn+1(x) + n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

where Ψn stands for An and Bn, and a stable scheme for computing Ψn relies on a downward recursion. Beginning with an estimate for Ψn, where n is larger that the number of terms required for convergence, successively lower-order logarithmic derivatives can be generated by downward recursion. It should be noted that the downward stability of Ψn is a consequence of the downward stability of the spherical Bessel functions jn (see Appendix A).

The transition matrix of a spherical particle is diagonal with entries

Tmn,m11 1n1 = Tn1δmm1 δnn1 ,

Tmn,m22 1n1 = Tn2δmm1 δnn1 ,

102 2 Null-Field Method

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

=

mrAn (mrx) + n jn (x)

jn

1 (x)

(2.46)

 

 

 

 

 

 

 

x

 

 

 

Tn

 

 

 

 

 

mrAn (mrx) + nx hn(1) (x) − hn(1)1 (x)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An (mrx)

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ x

jn (x) − jn−1 (x)

 

 

2

=

 

 

mr

 

(2.47)

Tn

 

 

 

 

 

 

 

 

.

An (mrx)

 

n

(1)

(1)

 

 

 

 

 

 

 

 

 

+ x

hn (x) − hn−1 (x)

 

 

 

 

 

 

 

mr

 

Equations (2.46) and (2.47) relating the transition matrix to the size parameter and relative refractive index are identical to the expressions of the Lorenz–Mie coe cients given by Bohren and Hu man [17].

2.2 Homogeneous and Chiral Particles

The problem of scattering by isotropic, chiral spheres has been treated by Bohren [16], and Bohren and Hu man [17] using rigorous electromagnetic field-theoretical calculations, while the analysis of nonspherical, isotropic, chiral particles has been rendered by Lakhtakia et al. [135]. To account for chirality, the surface fields have been approximated by leftand right-circularly polarized fields and the same technique is employed in our analysis. The transmission boundary-value problem for a homogeneous and isotropic, chiral particle has the following formulation.

Given Ee, He as an entire solution to the Maxwell equations representing the external excitation, find the vector fields Es, Hs and Ei, Hi satisfying the Maxwell equations

× Es = jk0µsHs ,

 

× Hs = jk0εsEs

(2.48)

in Ds, and

 

 

 

 

 

 

 

 

 

Ei

 

 

Ei

 

 

× Hi

 

 

= K

Hi

 

(2.49)

in Di, where

 

 

 

 

 

 

 

 

K =

1

 

 

 

βki2

jk0µi

(2.50)

 

 

 

jk0εi βki2 .

1 − β2ki2

 

In addition, the vector fields must satisfy the transmission conditions (2.2) and the Silver–M¨uller radiation condition (2.3).

Applications of the extinction theorem and Huygens principle yield the null-field equations (2.6) and the integral representations for the scattered field coe cients (2.16). Taking into account that the electromagnetic fields propagating in an isotropic, chiral medium can be expressed as a superposition of vector spherical wave functions of leftand right-handed type (cf. Sect. 1.3), we represent the approximate surface fields as

2.2 Homogeneous and Chiral Particles

103

$ eiN (r ) %

N N

 

 

n (r ) × Lµ (kLir )

 

 

= cµ

 

 

 

 

 

 

 

 

hN (r )

 

j

 

εi n (r )

×

Lµ (kLir )

i

µ=1

 

µi

 

 

 

 

 

N

n (r ) × Rµ (kRir )

 

 

+dµ j

 

 

 

 

 

 

(k r ) ,

 

 

εi n (r )

×

R

µ

 

 

 

µi

 

 

 

 

 

Ri

 

where Lµ and Rµ are given by (1.58) and (1.59), respectively, and

kLi =

ki

, kRi =

ki

1 − βki

1 + βki

are the wave numbers of the leftand right-handed type waves. The transition matrix of a homogeneous, chiral particle then becomes

 

 

T =

Q11

(ks, ki) Q31

(ks, ki) 1 ,

 

 

 

 

chiral

chiral

 

 

 

where, for µi = µs, the elements of the Qchiral31

matrix are given by

31

11

 

jks2

 

3

 

Qchiral

νµ

=

 

 

S [n (r ) × Lµ (kLir )] · N

 

(ksr )

π

 

ν

Q31chiral 12νµ =

Q31chiral 21νµ =

and

Q31chiral 22νµ =

 

 

εi

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

"

 

+

 

 

 

 

 

 

 

 

 

[n (r )

× Lµ (kLir )] · M

 

 

 

 

 

 

(ksr )

dS (r ) , (2.51)

 

εs

ν

jks2

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

S [n (r ) × Rµ (kRir )] · N

 

 

 

 

 

 

(ksr )

 

 

 

π

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

εi

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

[n (r )

× Rµ (kRir )] · M

 

 

 

 

 

(ksr )

dS (r ) , (2.52)

εs

ν

 

 

 

jks2

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

S [n (r ) × Lµ (kLir )] · M

 

 

 

 

(ksr )

 

 

 

π

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r )" dS (r ) , (2.53)

 

+

εi

 

[n (r )

×

L (k r )]

·

N

3

 

 

(k

 

 

 

 

 

 

 

 

εs

 

 

µ

Li

 

ν

 

 

 

 

s

 

 

 

jks2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

S [n (r ) × Rµ (kRir )] · M

 

 

(ksr )

 

 

 

π

 

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(k r )" dS (r ) . (2.54)

 

 

 

εi

[n (r )

×

R

 

(k r )]

·

N

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εs

 

 

 

µ

Ri

 

 

ν

 

 

 

 

s

 

The expressions of the elements of the Q11chiral matrix are similar but with M 1ν and N 1ν in place of M 3ν and N 3ν , respectively. It must be noted that in case the

104 2 Null-Field Method

particle is spherical, the transition matrix becomes diagonal, and the resulting solution tallies exactly with that given by Bohren [16] for chiral spheres. In addition, if β = 0, i.e., the particle becomes a nonchiral sphere, the Lorenz– Mie series solution is obtained. Finally, simply by setting kLi = kRi = ki and β = 0, the solution for a nonspherical, nonchiral particles is recovered. In our analysis, the ambient medium is nonchiral and a generalization of the present approach to the scattering by a chiral particle in a chiral host medium has been addressed by Lakhtakia [128].

2.3 Homogeneous and Anisotropic Particles

The scattering by anisotropic particles is mostly restricted to simple shapes such as cylinders [232] or spheres [265]. Liu et al. [143] solved the electromagnetic fields in a rotationally uniaxial medium by using the method of separation of variables, while Piller and Martin [193] analyzed three-dimensional anisotropic particles by using the generalized multipole technique. In our analysis we follow the treatment of Kiselev et al. [119] which solved the scattering problem of radially and uniformly anisotropic spheres by using the vector quasi-spherical wave functions for internal field representation. The transmission boundary-value problem for a homogeneous and uniaxial anisotropic particle has the following formulation.

Given Ee, He as an entire solution to the Maxwell equations representing the external excitation, find the vector fields Es, Hs and Ei, Hi satisfying the Maxwell equations

× Es = jk0µsHs , × Hs = jk0εsEs

(2.55)

in Ds, and

 

 

 

 

 

× Ei = jk0Bi , × Hi = jk0Di ,

 

· Bi = 0 ,

 

· Di

= 0

(2.56)

in Di, where

 

 

 

 

 

Di =

 

iEi , Bi = µiHi ,

(2.57)

ε

and

 

 

 

 

 

 

 

 

 

εi 0

0

 

 

 

 

i

= 0 εi

0 .

(2.58)

ε

 

 

 

 

0 0 εiz

 

 

In addition, the vector fields must satisfy the transmission conditions (2.2)

and the Silver–M¨uller radiation condition (2.3).

Considering the null-field equations (2.6) and the integral representations for the scattered field coe cients (2.16), and taking into account the results

e,h mn
e,h mn

2.4 Inhomogeneous Particles

105

established in Sect. 1.3 regarding the series representations of the electromagnetic fields propagating in anisotropic media, we see that the scattering problem can be solved if we approximate the surface fields by finite expansions of vector quasi-spherical wave functions X and Y (cf. (1.48)–(1.53)),

$

eNi (r ) hNi (r )

% N

N

 

 

n (r ) × Xµe (r )

 

= cµ

 

 

 

 

 

 

 

 

 

j

 

 

εi n (r )

×

Xh

(r )

µ=1

 

 

 

 

µi

 

µ

 

 

N

n (r ) × Y µe (r )

 

 

+dµ

 

 

 

 

 

 

Y h (r ) .

 

j

 

εi n (r )

×

 

 

 

µi

 

 

 

µ

 

 

The transition matrix of an uniaxial anisotropic particle then becomes

T = −Q11anis (ks, ki, mrz ) Q31anis (ks, ki, mrz ) 1 ,

where mrz = εiz s, and for µi = µs, the elements of the Q31anis matrix are given by

31

11

=

jks2

 

e

 

 

3

 

+

 

 

εi

 

 

h

3

 

 

Qanis

νµ

 

 

 

n × Xµ

 

· N

 

 

 

 

 

 

 

 

 

n × Xµ · M

 

 

dS ,

(2.59)

 

π

S

ν

 

 

εs

ν

 

 

 

 

jks2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

12

=

 

 

e

 

 

3

 

+

 

εi

 

 

h

3

 

Qanis νµ

 

 

 

n × Y

µ

 

· N

 

 

 

 

 

 

 

n × Y µ · M

 

dS ,

(2.60)

 

π

S

ν

 

 

εs

ν

 

 

 

jks2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

21

=

 

e

 

 

 

3

+

 

εi

 

h

3

 

Qanis

νµ

 

 

 

n × Xµ

 

· M

 

 

 

 

 

 

 

n × Xµ · N

 

 

dS ,

(2.61)

 

π

S

ν

 

 

 

 

εs

ν

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jks2

 

 

 

 

 

 

 

 

 

 

 

 

 

31

22

=

 

 

e

 

 

 

3

+

 

εi

 

h

3

 

Qanis νµ

 

 

 

n × Y

µ

 

· M

 

 

 

 

 

 

 

n × Y µ · N

 

dS .

(2.62)

 

π

S

ν

 

 

 

 

εs

 

ν

The expressions of the elements of the Q11anis matrix are similar but with M 1ν and N 1ν in place of M 3ν and N 3ν , respectively. Using the properties of the

vector quasi-spherical wave functions (cf. (1.47)) it is simple to show that for εiz = εi, the present approach leads to the T -matrix solution of an isotropic particle.

2.4 Inhomogeneous Particles

In this section, we consider electromagnetic scattering by an arbitrarily shaped, inhomogeneous particle with an irregular inclusion. Our treatment follows the analysis of Peterson and Str¨om [189] for multilayered particles and is similar to the approach used by Videen et al. [243] for a sphere with an irregular inclusion. Note that an alternative derivation using the Schelkuno ’s equivalence principle has been given by Wang and Barber [248].

106 2 Null-Field Method

2.4.1 Formulation with Addition Theorem

In the present analysis we will derive the expression of the transition matrix by using the translation properties of the vector spherical wave functions. The completeness property of the vector spherical wave functions on two enclosing surfaces, which is essential in our analysis, is established in Appendix D.

The scattering problem is depicted in Fig. 2.2. The surface S1 is defined with respect to a Cartesian coordinate system O1x1y1z1, while the surface S2 is defined with respect to a Cartesian coordinate system O2x2y2z2. By assumption, the coordinate system O2x2y2z2 is obtained by translating the coordinate system O1x1y1z1 through r12 and by rotating the translated coordinate system through the Euler angles α, β and γ. The boundary-value problem for the inhomogeneous particle depicted in Fig. 2.2 has the following formulation.

Given the external excitation Ee, He as an entire solution to the Maxwell equations, find the scattered field Es, Hs and the internal fields Ei,1, Hi,1and Ei,2, Hi,2 satisfying the Maxwell equations

× Es = jk0

µsHs ,

× Hs = jk0εsEs in

Ds ,

(2.63)

× Ei,1 = jk0

µi,1Hi,1 ,

× Hi,1 = jk0εi,1Ei,1

in Di,1 , (2.64)

and

 

 

 

 

 

× Ei,2 = jk0µi,2Hi,2 , × Hi,2 = jk0εi,2Ei,2

in

Di,2 ,

(2.65)

the boundary conditions

 

 

 

 

 

n1 × Ei,1 − n1 × Es = n1 × Ee ,

 

 

 

n1 × Hi,1 − n1 × Hs = n1 × He ,

 

 

(2.66)

 

M1

 

 

 

n1

 

 

 

 

 

 

r29

 

 

M2

 

P

r2 r19

 

r199

 

 

 

r1

 

r299 n2

S1

 

 

O

 

 

 

 

2

 

 

O

1

r12

S2

 

 

 

 

 

 

 

 

 

 

 

Di,1

 

Di,2

 

 

 

 

 

 

Ds

Fig. 2.2. Geometry of an inhomogeneous particle

2.4 Inhomogeneous Particles

107

on S1 and

n2 × Ei,1 = n2 × Ei,2 ,

 

n2 × Hi,1 = n2 × Hi,2 ,

(2.67)

onS2, and the Silver–M¨uller radiation condition for the scattered field (2.3).

The Stratton–Chu representation theorem for the scattered field Es in Di,

where Di = Di,1

Di,2 S2 = Di,1

D

i,2 = R3

D

s, together with the

boundary conditions (2.66), yield the general null-field equation

 

 

 

E

(r

) +

1

 

e

 

(r ) g (k

, r

, r ) dS (r )

 

 

 

(2.68)

e

1

 

 

× S1

 

i,1

1

s

1

 

 

1

 

1

 

 

 

 

 

 

+

j

 

 

 

 

 

 

h

(r ) g (k

 

 

, r

, r

) dS (r

) = 0 , r

1

D

,

 

 

 

 

 

 

 

 

 

 

k0εs 1 × 1 × S1

i,1

1

s

1

1

1

 

 

i

 

while the Stratton–Chu representation theorem for the internal field Ei,1 in Ds and Di,2 together with the boundary conditions (2.67), give the general null-field equation

 

 

 

 

e

 

(r ) g (k

 

, r

, r

 

) dS (r )

 

 

 

 

 

 

 

1 ×

S1

i,1

 

1

i,1

 

1

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

h

 

(r

) g (k

 

, r

, r ) dS (r )

 

 

 

 

 

k0εi,1

 

 

 

 

 

 

 

 

 

 

1 × 1 ×

S1

 

i,1

 

 

1

 

 

i,1

1

1

1

 

 

 

 

 

+

 

 

 

 

e

 

(r ) g (k

 

 

, r

, r ) dS (r )

 

 

 

(2.69)

 

1 × S2

i,2

1

 

i,1

1

 

 

1

 

1

 

 

 

 

 

 

 

+

 

 

j

 

 

 

 

h

 

(r ) g (k

 

, r

, r ) dS (r ) = 0 , r

1

D

s

D

.

 

 

 

 

 

 

 

 

 

 

k0

εi,2

1 × 1 ×

S2

 

i,2

 

 

1

 

 

i,1

1

1

1

 

i,2

 

In (2.68) and (2.69), the surface fields are the tangential components of the electromagnetic fields in Di,1 and Di,2

ei,1 = n1 × Ei,1 , hi,1 = n1 × Hi,1

on S1

and

 

ei,2 = n2 × Ei,2, hi,2 = n2 × Hi,2

on S2 ,

respectively.

Considering the general null-field equation (2.68), we use the vector spherical wave expansions of the incident field and of the dyad gI on a sphere enclosed in Di, to obtain

jks2

 

 

 

 

 

 

 

$ N

3

 

 

(ksr1) %

 

 

 

 

 

 

 

 

 

 

ν

 

 

 

(2.70)

 

 

 

 

ei,1 (r1) ·

 

 

 

3

 

(ksr )

 

 

 

π S

 

 

M

 

 

 

 

 

 

ν

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

$ M

3

(ksr1) %

 

 

 

$ aν %

 

µs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

 

 

+ j

 

 

 

h

i,1

(r

)

·

 

 

 

 

 

 

 

 

dS (r

) =

, ν = 1, 2, . . .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εs

 

 

1

 

N

3

(ksr )

1

 

bν

 

 

 

 

 

 

 

 

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

108 2 Null-Field Method

For the general null-field equation (2.69) in Ds, we proceed analogously but restrict r1 to lie on a sphere enclosing Di. We then have

 

jki2,1

 

 

 

 

 

$ N

1

(ki,1r1) %

 

 

 

 

 

 

ν

 

 

 

 

 

 

 

 

 

ei,1 (r1) ·

 

 

 

 

 

 

1

 

(ki,1r )

 

π

 

 

 

S

1

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$

 

 

 

 

 

 

ν

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%

 

 

 

 

µi,1

 

 

 

 

 

 

M

1

 

 

(ki,1r1)

 

 

 

 

 

 

 

 

 

ν

dS (r )

+ j

 

 

 

 

 

 

h

i,1

(r

)

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εi,1

 

 

1

 

N

1

(ki,1r )

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

1

 

 

 

jki2,1

 

 

 

 

$ N

1

(ki,1r1 ) %

 

 

 

 

 

ν

+

 

 

 

 

 

 

 

 

ei,2 (r2 ) ·

 

 

 

 

 

 

1

(ki,1r )

 

π

 

 

 

 

S

 

 

M

 

 

 

 

 

 

 

2

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

$ M

1

 

(ki,1r1 ) %

 

 

 

µi,1

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

+ j

 

 

 

 

 

 

h

i,2

(r )

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS (r ) = 0 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εi,1

 

 

2

 

N

1

(ki,1r )

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

1

 

(2.71)

ν = 1, 2, . . . ,

where the identities ei,2(r2 ) = ei,2(r1 ) and hi,2(r2 ) = hi,2(r1 ) have been used. Finally, for the general null-field equation (2.69) in Di,2, we pass from

the origin O1 to the origin O2 by taking into account that the gradient is invariant to a translation of the coordinate system, use the relations

g (ki,1, r1, r1) = g (ki,1, r2, r2) , g (ki,1, r1, r1 ) = g (ki,1, r2, r2 ) ,

and restrict r2 to lie on a sphere enclosed in Di,2. We obtain

 

jki2,1

 

 

 

 

 

$ N

3

(ki,1r2) %

 

 

 

 

 

 

ν

 

 

 

 

 

 

 

 

 

ei,1 (r1) ·

 

 

 

 

 

 

3

(ki,1r )

 

π

 

 

 

S

1

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$

 

 

 

 

 

 

ν

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%

 

 

 

 

µi,1

 

 

 

 

 

 

M

3

 

 

(ki,1r2)

 

 

 

 

 

 

 

 

 

ν

 

+ j

 

 

 

 

 

 

h

i,1

(r

)

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS (r )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εi,1

 

 

1

 

N

3

(ki,1r )

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

2

 

 

 

jki2,1

 

 

 

 

$ N

3

(ki,1r2 ) %

+

 

 

 

ν

 

 

 

 

 

 

 

 

ei,2 (r2 ) ·

 

 

 

 

 

 

3

 

(ki,1r )

 

π

 

 

 

 

S

 

 

M

 

 

 

 

 

 

 

 

2

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

$ M

3

 

(ki,1r2 ) %

 

 

 

µi,1

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

+ j

 

 

 

 

 

 

h

i,2

(r )

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS (r ) = 0 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

εi,1

 

 

2

 

N

3

(ki,1r )

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

2

 

(2.72)

ν = 1, 2, . . . ,

where, as before, the identities ei,1(r1) = ei,1(r2) and hi,1(r1) = hi,1(r2) have been employed. The set of integral equations (2.70)–(2.72) represent the null-field equations for the scattering problem under examination.

The surface fields ei,1 and hi,1 are the tangential components of the electric and magnetic fields in the domain Di,1 bounded by the closed surfaces S1 and S2. Taking into account the completeness property of the system of regular and radiating vector spherical wave functions on two enclosing surfaces

Соседние файлы в предмете Оптика