Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.46 Mб
Скачать

3.10 E ective Medium Model

249

 

0.4

 

 

 

 

 

 

 

EFMED

 

 

 

 

 

 

QCAMIE

 

 

 

 

Tangent

0.3

 

 

 

 

 

 

 

 

 

 

 

EffectiveLoss

0.2

 

 

 

 

 

0.1

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

 

0.0

Size Parameter

Fig. 3.79. E ective loss tangent versus size parameter computed with the EFMED routine and the Matlab program QCAMIE

and the quasi-crystalline approximation with coherent potential [118],

 

 

 

 

 

c (εr 1)

 

 

 

 

 

 

 

 

K2

= k2 1 +

 

 

 

 

 

 

 

 

 

 

s

s

 

1 +

 

ks2

(εr1)

(1

− c)

 

 

 

 

 

 

 

 

 

 

3Ks2

 

 

 

 

 

 

 

 

 

 

 

2

R

3

 

 

 

 

 

εr 1

 

 

(1 − c)

4

 

 

×

1 + j

2Ksks

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

9

 

 

 

1 +

ks

(εr1)

(1

− c)

 

(1 + 2c)2

 

 

 

 

 

 

 

 

 

 

 

3Ks2

 

 

 

 

Figure 3.80 shows plots of Im{Ks/k0} versus concentration for spherical particles of radius a = 3.977 ·103 µm and relative refractive index (with respect to the ambient medium) mr = 1.194. The wave number in free space is k0 = 10, while the refractive index of the ambient medium is m = 1.33.

In Fig. 3.81 we plot Im{Ks/k0} versus concentration for a = 1.047 · 102 µm, mr = 1.789 and m = 1.0. Computed results using the T -matrix method agree with the quasi-crystalline approximation. It should be observed that both the quasi-crystalline approximation and the quasi-crystalline approximation with coherent potential do predict maximum wave attenuation at a certain concentration.

In Figs. 3.82 and 3.83, we show calculations of Re{Ks} and Im{Ks} as functions of the size parameter x = ks max{a, b} for oblate and prolate spheroids. The spheroids are assumed to be oriented with their axis of symmetry along the Z-axis or to be randomly oriented. Since the incident wave is also assumed to propagate along the Z-axis, the medium is not anisotropic and is characterized by a single wave number Ks. The axial ratios are a/b = 0.66 for oblate spheroids and a/b = 1.5 for prolate spheroids. As before, the fractional

250 3 Simulation Results

Im(K/k)

−3.0

10

EFMED (T-Matrix Multiple Scattering Theory)

QCA QCA - CP

−4.0

10

−5.0

 

 

 

 

 

 

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

Concentration

Fig. 3.80. Im{Ks/k0} for a = 3.977 · 103 µm, mr = 1.194 and m = 1.33. The results are computed with the T -matrix method, quasicrystalline approximation (QCA) and quasicrystalline approximation with coherent potential (QCA-CP)

Im(K/k)

−4.0

10

EFMED (T-Matrix Multiple Scattering Theory)

QCA QCA - CP

−5.0

10

−6.0

 

 

 

 

 

 

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Concentration

Fig. 3.81. Im{Ks/k0} for a = 1.047 · 102 µm, mr = 1.789 and m = 1.0. The results are computed with the T -matrix method, quasicrystalline approximation (QCA) and quasicrystalline approximation with coherent potential (QCA-CP)

concentration is c = 0.2 and the relative refractive index of the particles is mr = 1.789. The significant feature in Fig. 3.82 is the occurrence of a maximum in Re{Ks} at x = 1.6 for spherical particles. In the low-frequency regime up to x = 0.5, the Im{Ks} curves increase rapidly with x and then show a smooth

3.10 E ective Medium Model

251

12.4

12.0

11.6 Re(K)

11.2

10.8

10.4

0.0

sphere

oblate - fixed orientation oblate - random orientation prolate - fixed orientation prolate - random orientation

0.4

0.8

1.2

1.6

2.0

Size Parameter

Fig. 3.82. Re{Ks} versus the size parameter x = ks max{a, b} for oblate and prolate spheroids with a/b = 0.66 and a/b = 1.5, respectively. The calculations are performed for c = 0.2, mr = 1.789 and m = 1.0

Im(K)

0.0

10

−1.0

10

−2.0

10

−3.0

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

sphere

 

 

−4.0

 

 

oblate - fixed orientation

 

10

 

 

 

oblate - random orientation

 

 

 

 

 

prolate - fixed orientation

 

−5.0

 

 

prolate - random orientation

 

 

 

 

 

 

10

0.0

0.4

0.8

1.2

1.6

2.0

Size Parameter

Fig. 3.83. Im{Ks} versus the size parameter x = ks max{a, b} for oblate and prolate spheroids. The parameters of calculation are as in Fig. 3.82

increase with x. Note that for a given size parameter x, the radius of a spherical particle is larger than the equal-volume-sphere radii of an oblate and a prolate spheroid, and this feature is reflected in the variations of Re{Ks} and Im{Ks}.

A

Spherical Functions

In this appendix we recall the basic properties of the solutions to the Bessel and Legendre di erential equations and discuss some computational aspects. Properties of spherical Bessel and Hankel functions and (associated) Legendre functions can be found in [1, 40, 215, 238].

In a source-free isotropic medium the electric and magnetic fields satisfy the equations

× × X − k2X = 0,

· X = 0,

where X stands for E or H. Since

× × X = X + ( · X) ,

we see that X satisfies the vector wave equation

X + k2X = 0

and we deduce that each component of X satisfies the scalar wave equation or the Helmholtz equation

 

 

 

 

 

 

 

 

 

 

 

u + k2u = 0.

 

 

 

The Helmholtz equation written in spherical coordinates as

 

 

 

 

1

 

2 ∂u

 

1

∂u

 

1 2u

+ k

2

u = 0

 

 

 

 

r

 

 

 

+

 

 

 

 

sin θ

 

 

+

 

 

 

 

r2 ∂r

 

∂r

r2 sin θ

∂θ

∂θ

r2 sin2 θ

∂ϕ2

 

is separable, so that upon replacing

u(r) = f1(r)Y (θ, ϕ) ,

254 A Spherical Functions

where (r, θ, ϕ) are the spherical coordinates of the position vector r, we obtain

1

r2f1 + 2rf1 +

k2r2 − n(n + 1) f1 = 0,

(A.1)

sin θ

∂Y

 

+

1

 

 

2Y

+ n(n + 1)Y = 0.

(A.2)

 

 

 

 

 

 

 

 

 

sin θ ∂θ

∂θ

sin2 θ ∂ϕ2

 

 

 

 

The above equations are known as the Bessel di erential equation and the di erential equation for the spherical harmonics. Further, setting

 

 

 

 

 

Y (θ, ϕ) = f2(θ)f3 (ϕ) ,

 

 

 

we find that

 

 

 

 

 

 

 

 

 

 

1 d

 

df2

 

 

m2

 

= 0,

(A.3)

 

 

 

 

 

sin θ

 

+

n(n + 1)

 

 

f2

sin θ

dθ

dθ

sin2 θ

 

 

 

 

 

 

 

 

f3 + m2f3

= 0.

(A.4)

The di erential equation (A.3) is known as the associated Legendre equation, while the solution to the di erential equation (A.4) is f3(ϕ) = exp(j ).

A.1 Spherical Bessel Functions

With the substitution x = kr, the spherical Bessel di erential equation can be written in the standard form

x2f (x) + 2xf (x) + x2 − n(n + 1) f (x) = 0 .

For n = 0, 1, . . . , the functions

 

 

 

 

 

 

p

n+2p

 

 

 

 

 

( 1) x

 

 

 

 

 

 

 

jn(x) =

 

 

 

 

 

 

 

 

2pp!(2n + 2p + 1)!!

 

 

 

 

 

p=0

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

(2n)!

( 1)px2p−n−1

y

(x) =

 

 

 

 

 

 

 

, (A.5)

 

 

 

 

 

 

 

n

 

2nn! p=0 2pp! (2n + 1) (2n + 3) · · · (2n + 2p − 1)

where 1 · 3 · · · (2n + 2p + 1) = (2n + 2p + 1)!!, are solutions to the spherical Bessel di erential equation (the first coe cient in the series (A.5) has to be set equal to one). The functions jn and yn are called the spherical Bessel and Neumann functions of order n, respectively, and the linear combinations

h(1n ,2) = jn ± jyn

are known as the spherical Hankel functions of the first and second kind. From the series representations we see that

A.1 Spherical Bessel Functions

255

 

2n + 1

zn

(x) = zn−1(x) + zn+1(x),

 

 

(A.6)

 

x

 

 

(2n + 1) z

(x) = nz

n−1

(x)

(n + 1)z

n+1

(x),

(A.7)

 

 

n

 

 

 

 

 

and

d

dx [xzn(x)] = xzn−1(x) − nzn(x), (A.8)

where zn stands for any spherical function. The Wronskian relation for the spherical Bessel and Neumann functions is

 

jn(x)yn

(x) − jn(x)yn(x) =

 

1

 

 

 

 

 

 

x2

 

 

 

 

and for small values of the argument we have

 

 

 

 

 

 

 

 

 

jn(x) =

 

 

 

xn

1 + O x2 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n + 1)!!

 

 

 

 

 

 

 

 

 

 

 

yn(x) =

 

 

(2n − 1)!!

1 + O x2

 

 

 

 

 

 

 

 

xn+1

 

 

 

 

 

 

 

 

 

 

as x → 0, while for large value of the argument,

 

 

 

 

 

 

 

 

jn(x) =

1

cos

 

 

 

 

(n + 1)π

!

 

 

 

 

1

"

 

 

x −

 

 

 

 

 

 

1 + O

 

 

 

,

x

 

2

 

 

 

x

yn(x) =

1

sin

 

 

 

(n + 1)π

!

 

 

 

 

1

 

"

 

 

x −

 

 

 

 

 

1 + O

 

 

,

x

 

2

 

 

x

(1)

(x) =

ej[x−(n+1)π/2] !

1

"

 

 

 

 

hn

 

 

 

 

 

 

 

 

 

 

1 + O

 

 

 

,

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

h(2)

(x) =

ej[x−(n+1)π/2]

!1 + O

1

"

 

 

 

 

n

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as x → ∞.

Spherical Bessel functions can be expressed in terms of trigonometric func-

tions, and the first few spherical functions have the explicit forms

 

j0

(x) =

sin x

,

 

 

 

 

 

 

 

(A.9)

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

y0

(x) =

cos x

 

 

 

 

 

 

(A.10)

 

 

,

 

 

 

 

 

 

x

 

 

 

 

 

 

 

j1

(x) =

sin x

cos x

,

 

(A.11)

 

 

 

 

 

 

 

x2

 

x

 

(x) =

cos x

 

sin x

(A.12)

y1

 

 

 

 

 

,

x2

 

 

x

 

jn(x)

256 A Spherical Functions

and

h

(1)

(x) =

 

ejx

,

 

0

 

jx

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

(x) =

ejx

h0

 

 

.

 

jx

The spherical Bessel functions are computed by downward recursion. This recursion begins with two successive functions of small values and produces functions proportional to the Bessel functions rather than the actual Bessel functions. The constant of proportionality between the two sets of functions is obtained from the function of order zero j0. Alternatively, the spherical Bessel functions can be computed with an algorithm involving the auxiliary function χn [169]

χn(x) = jn−1(x) .

In this case, the functions χn are calculated with the downward recurrence relation

1

χn(x) = 2nx+1 − χn+1(x) ,

the constant of proportionality is obtained from the function of order one, χ1(x) = 1/x − cot x, and the spherical Bessel functions are computed with the upward recursion

jn(x) = χn(x)jn−1(x)

starting at j1. The spherical Neumann functions are calculated by upward recursion starting with the functions of order zero and one, y0 and y1, respectively.

A.2 Legendre Functions

With the substitution x = cos θ, the associated Legendre equation transforms to

 

 

m2

 

 

1 − x2 f (x) 2xf (x) + n(n + 1)

 

 

 

f (x) = 0.

(A.13)

1

x2

 

 

 

 

 

This equation is characterized by regular singularities at the points x = ±1 and at infinity. For m = 0, there are two linearly independent solutions to the Legendre di erential equation and these solutions can be expressed as power series about the origin x = 0. In general, these series do not converge for

A.2 Legendre Functions

257

x = ±1, but if n is a positive integer, one of the series breaks o after a finite number of terms and has a finite value at the poles. These polynomial solutions are called Legendre polynomials and are denoted by Pn(x). For m = 0, the solutions to (A.13) which are finite at the poles x = ±1 are the associated Legendre functions. If m and n are integers, the associated Legendre functions are defined as

 

 

 

 

 

 

 

 

 

P m(x) = 1

x2 m/2

dmPn(x)

.

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

dxm

 

 

 

Useful recurrence relations satisfied by Pnm are

 

 

 

 

 

 

(2n + 1) xPnm(x) = (n − m + 1) Pnm+1(x) + (n + m) Pnm1(x),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A.14)

 

 

 

 

 

 

 

 

(2n + 1)

 

1 − x2

Pnm(x) = (n + m − 1) (n + m) Pnm11(x)

(A.15)

 

 

 

 

 

 

 

 

 

 

 

 

 

(n − m + 1) (n − m + 2) Pnm+11(x),

 

(2n + 1)

1

x2P m−1

(x) = P m (x)

 

P m

(cos θ) ,

(A.16)

 

 

 

 

 

 

 

n

 

n+1

n−1

 

 

 

 

 

(2n + 1) 1

x2

d

P m(x) = (n + 1) (n + m) P m

 

(x)

 

 

 

 

 

 

 

 

 

 

 

dx n

 

 

 

 

 

 

n−1

 

 

 

 

 

 

 

 

 

d

 

 

 

−n (n − m + 1) Pnm+1(x),

(A.17)

1

 

x2

P m

(x) = (n + m)P m

(x)

nxP m(x).

(A.18)

 

 

 

 

 

 

 

dx n

 

 

 

n−1

 

 

 

n

 

The angular functions πm and τ m are related to the associated Legendre

n n functions by the relations

 

 

 

m

 

 

 

 

Pnm(cos θ)

 

 

 

 

(A.19)

 

 

 

πn (θ) =

 

 

sin θ

 

 

,

 

 

 

 

 

 

 

 

τnm(θ) =

d

Pnm(cos θ).

 

 

(A.20)

 

 

 

dθ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For positive values of m and for θ → 0 or θ → π,

 

 

 

 

 

m

(cos θ)

(n + m)!

2

 

 

m

 

2n + 1

 

Pn

 

 

 

 

 

 

 

 

 

 

 

Jm

 

 

θ

(n

m)!

2n + 1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

(θ)

1

 

 

 

(n + m)!

 

 

 

 

θ

m−1

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

2

(n

m)!(m

1)!

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m−1

 

 

m

(θ)

1

 

 

 

(n + m)!

 

 

 

 

θ

 

 

τn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

2

 

(n

m)!(m

1)!

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

258 A Spherical Functions

while for n 1 and away from θ = 0 and θ = π, we have

 

 

 

 

 

 

2

 

1

 

 

 

 

 

 

2n + 1

 

 

 

 

 

 

 

 

 

 

 

 

P m(cos θ)

2

(sin θ)21

nm− 21 cos

 

θ +

 

 

 

π

 

 

 

π

 

 

 

2

 

 

 

 

 

4

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1

 

 

nm− 21 cos

2n + 1

 

 

 

 

 

 

 

 

 

 

,

πm(θ)

 

2

(sin θ)23

θ +

 

 

π

 

π

 

 

 

 

2

 

2

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

2

 

 

1

 

 

 

 

 

2n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

2

 

21

 

m+ 21

θ +

mπ π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τn

(θ)

 

π

 

 

 

(sin θ)

n

 

sin

 

2

 

2

4 .

In our analysis we use the associated Legendre functions with positive values of the index m. For m ≥ 0, the normalized associated Legendre functions are given by

Pnm(cos θ) = cmnPnm(cos θ),

where cmn is a normalization constant and

 

 

 

 

 

 

 

 

 

 

c

 

=

2n + 1

 

(n − m)!

.

 

 

 

 

 

2

 

 

mn

 

· (n + m)!

Similarly, the normalized angular functions πm and τ m

m

m

n

n

 

 

angular functions πn

and τn by the relations

 

 

πnm(θ) = cmnπnm(θ),

 

 

m

m

 

 

τn

(θ) = cmnτn (θ) .

 

(A.21)

are related to the

(A.22)

(A.23)

An algorithm for computing the normalized associated Legendre functions Pnm involves the following steps.

(1) For m = 0, compute Pn+1 by using the recurrence relation

Pn+1(cos θ) =

1

 

 

 

 

 

 

 

 

 

 

 

 

 

cos θPn(cos θ)

(2n + 1)(2n + 3)

 

n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

2n + 3

n ≥ 1

 

 

 

 

 

 

 

 

 

 

Pn−1(cos θ) ,

 

n + 1

2n − 1

with the starting values

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0(cos θ) =

2

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1(cos θ) =

3

cos θ.

 

 

 

 

 

 

2

 

A.2 Legendre Functions

259

(2) For m ≥ 1, compute Pnm+1 by using the recurrence relation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n + 1)(2n + 3)

cos θP m(cos θ)

 

 

 

 

P m

(cos θ) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n + 1 − m)(n + 1 + m)

 

 

 

 

n+1

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n + 3)(n − m)(n + m)

P m

(cos θ),

 

 

 

 

 

 

(2n

n

m

 

 

 

1)(n + 1

m)(n + 1 + m)

 

n−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the initial values

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pmm−1(cos θ) = 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2m + 1

 

 

 

 

 

 

 

 

 

 

Pmm(cos θ) =

 

(2m − 1)!! sinm θ.

 

 

 

 

 

 

2 (2m)!

 

 

 

Considering the angular functions πnm, we see that πn0 diverges at θ = 0 and θ = π. Because in our applications, the product nm appears explicitly, we set πn0 = 0 for n ≥ 0. For m ≥ 1, the angular functions πnm are computed by using (A.19), (A.21) and (A.22), and the recurrence relations for the normalized associated Legendre functions.

The angular functions τnm can be calculated with the following algorithm.

(1) For m = 0, compute

 

 

 

 

d

P

 

(cos θ) = P

(cos θ)

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

d cos θ

 

 

 

 

 

 

 

 

n

 

 

 

 

 

by using the recurrence relation

 

 

 

 

 

 

 

 

(cos θ) = n

 

 

 

P

 

 

 

(cos θ) +

 

 

 

cos θP

 

P

 

2n + 1

 

 

 

 

2n + 1

 

(cos θ)

 

 

 

 

n−1

2n − 1

 

n

 

 

2n − 1

 

 

 

n−1

 

with the starting value

P0 (cos θ) = 0,

and set [144]

τ 0

(θ) =

sin θP

(cos θ) , n

0 .

n

 

n

 

 

(2) For m ≥ 1, compute

τnm(θ) = n cos θπnm (θ)

τ m with the recurrence relation

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n + m)

 

 

(2n + 1)(n − m)

πm

(θ),

n

m.

 

 

 

 

 

(2n

1)(n + m)

 

n−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете Оптика