Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.46 Mб
Скачать

280 B Wave Functions

which yields

C001 ,0n (kz0) = (1)n 2n + 1jn (kz0) ,

C003 ,0n (kz0) = (1)n 2n + 1h(1)n (kz0) .

Using these starting values, the Cmm,mn coe cients can be computed from the recurrence relation (B.64) with m = n + 1,

 

 

 

 

 

 

 

(n + m 1) (n

+ m)

 

 

 

2m + 1

 

 

 

 

Cmm,mn (kz0) =

 

 

 

 

 

 

 

 

 

Cm−1m−1,m−1n −1(kz0)

 

2m

 

 

 

 

 

 

 

 

 

 

 

 

(2n − 1) (2n + 1)

 

 

 

 

 

 

 

 

 

 

+

 

(n − m + 1) (n − m + 2)

 

C

m−1m−1,m−1n +1

(kz

) ,

 

 

 

 

 

(2n + 1) (2n + 3)

 

 

 

0

 

where Cmm,mn can be obtained from C00,0n for all values of m ≥ 1 and n ≥ m, while (B.65) can then be used to compute Cmn,mn for n ≥ m + 1.

In general, the translation addition theorem for vector spherical wave functions can be written as [43, 213]

n

 

M mn (kr) =

Amn,m n (kr0)M m n (kr1)

n =1 m =−n

+Bmn,m n (kr0)N m n (kr1),

n

 

N mn (kr) =

Bmn,m n (kr0)M m n (kr1)

n =1 m =−n

+Amn,m n (kr0)N m n (kr1).

As in the scalar case, integral and series representations for the translation coe cients can be obtained by using the integral representations for the vector spherical wave functions. First we consider the case of regular vector spherical wave functions. Using the integral representation (B.26), the relation r = r0 + r1, and the vector spherical wave expansion

 

 

 

∞ n

 

 

 

 

 

 

( j) m

 

(β, α) ejk(β,α)·r1

 

 

 

 

 

(kr

)

mn

=

a1

 

M 1

 

 

mn,m n

 

m n

1

 

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

+b1

N 1

(kr

)

 

 

 

 

 

mn,m n

m n

 

1

 

 

 

B.4 Translations

281

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4jn +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

|(β)

 

a1

 

=

 

 

 

 

 

 

 

 

mm π|m|(β)π|

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

 

2n (n + 1)

 

 

 

n

 

 

 

 

 

n

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ τn|m|(β)τn|

|(β) ejm

α,

 

 

 

 

 

 

 

 

 

 

 

 

 

4jn +1

 

 

 

 

 

 

 

 

 

 

|

m

| (β)

 

b1

 

=

 

 

 

 

 

 

 

 

|m|(β)τ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

 

2n (n + 1)

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ m τn|m|(β)πn|

 

|(β) ejm

α,

 

 

 

 

 

we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

 

 

(kr

)

M 1

(kr) =

 

A1

 

 

 

 

1

 

 

mn

 

 

n =1 m =−n

mn,m n

 

 

0

 

 

 

 

m n

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+B1

(kr

0

)N 1

 

(kr

 

),

 

 

 

 

(B.66)

 

 

 

 

 

mn,m n

 

 

 

m n

 

 

1

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

 

 

(kr

)

N 1

(kr) =

 

B1

 

 

1

 

 

mn

 

 

n =1 m =−n

mn,m n

 

 

0

 

 

 

 

m n

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+A1

(kr

0

)N 1

 

(kr

 

),

 

 

 

 

(B.67)

 

 

 

 

 

mn,m n

 

 

 

m n

 

 

1

 

 

 

 

 

 

 

where

A1mn,m n (kr0) =

Bmn,m1 n (kr0) =

 

 

jn −n

 

 

 

 

2π π mm π|m|(β)π|m |

(β)

 

 

 

 

 

 

2π nn (n + 1) (n + 1)

0

0

n

n

 

+ τ |m|(β)τ |m |(β) ej(m−m )αejk(β,α)·r0 sin β dβdα,

 

 

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jn −n

 

 

 

 

2π π |m|(β)τ

|m |(β)

 

 

 

 

 

 

 

2π nn (n + 1) (n + 1)

0

0

n

n

 

+ m

m

|(β)

 

j

m

m

α

ejk(β,α)·r0 sin βdβ dα.

τn|m|(β)πn|

e

(

 

)

 

282 B Wave Functions

Inserting the spherical wave expansion of the plane wave exp(jk ·r0) and integrating over α, we derive the following series representation for the translation coe cients:

Amn,m1

n (kr0) =

 

2jn −n

jn

 

 

nn (n + 1) (n + 1)

 

 

 

 

n

×a1 (m, m | n , n, n ) u1m−m n (kr0) ,

Bmn,m1

n (kr0) =

 

2jn −n

jn

 

 

nn (n + 1) (n + 1)

 

 

 

 

n

×b1 (m, m | n , n, n ) u1m−m n (kr0) ,

where

a1

(m, m

|

n , n, n ) = π mm π|m|(β)π|m |

(β) + τ |m|(β)τ

|m |

(β)

 

 

0

 

 

n

 

n

n

 

n

 

 

 

 

 

×Pn|m−m | (cos β) sin β dβ,

 

 

 

 

 

(B.68)

b1

(m, m

 

π

m

| (β) τ

|

m

|(β) + m τ |

m

|(β)π|

m

|

 

|

n , n, n ) =

 

|

 

 

 

 

(β)

 

 

0

n

 

n

 

n

 

n

 

 

 

 

 

×

P

|m−m | (cos β) sin β dβ.

 

 

 

 

 

(B.69)

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

We note that the coe cients a1(·) and b1(·) can be expressed in terms of the coe cients a(·) by making use of the recurrence relations for the associated Legendre functions. As in the scalar case, the integration with respect to the azimuthal angle α gives

 

 

 

 

 

 

 

jn +m −n−m

 

 

 

A1

(kr

) =

 

 

 

 

 

 

 

e−j(m −m)ϕ0

 

 

 

 

 

 

 

 

 

 

 

mn,m n

0

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

×

π J

m −m

(sin β)

mm π|m|(β)π|m |

(β)

 

 

 

0

 

0

 

n

n

 

+ τn|m|(β)τn|m |(β) ejkz0 cos β sin β dβ

B.4 Translations

283

and

B1

(kr

) =

 

 

 

 

jn +m −n−m

 

e−j(m −m)ϕ0

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

0

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

×

π J

m −m

(sin β)

|m|(β)τ

|m |

(β)

 

 

 

0

 

0

 

 

n

n

 

 

 

 

+ m τ |m|(β)π|m |

(β) ejkz0 cos β sin βdβ.

 

 

 

 

 

 

 

n

 

n

 

 

 

 

 

If the translation is along the z-axis the double summation in (B.66) and (B.67) reduces to a single summation over the index n , and we have

A1

(kz

) =

 

 

 

 

 

 

jn −n

π m2π|m|(β)π|m|

(β)

 

 

 

 

 

 

 

mn,mn

 

0

 

 

nn (n + 1) (n + 1)

0

n

n

 

 

 

 

 

 

+ τ |m|(β)τ |m|(β) ejkz0 cos β sin β dβ

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

(kz

) =

 

 

 

 

mjn −n

 

π π|m|(β)τ

|m|(β)

 

 

 

 

 

 

 

mn,mn

 

0

 

 

 

nn (n + 1) (n + 1) 0

n

n

 

 

 

 

 

 

 

 

+ τ |m|(β)π|m|(β) ejkz0 cos β sin β dβ.

 

 

 

 

 

 

 

 

 

 

 

n

n

 

 

 

 

 

Passing to the radiating vector spherical wave functions we consider the integral representation (B.28) and the relation r = r0 + r1. For r1 > r0, this representation can written as

M 3

(kr) =

 

1

 

 

2π π (

j) m

 

(β, α) Q(k, β, α, r

 

)ejk(β,α)·r0

2πjn+1

mn

1

mn

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

× sin β dβ dα,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whence, using the vector spherical wave expansion

 

 

 

 

 

 

 

 

 

(j) mmn (β, α) Q(k, β, α, r1) =

 

n

 

 

 

 

 

 

 

 

 

 

amn,m3 n M m3 n (kr1)

 

 

 

 

 

 

 

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+b3

 

N

1

 

(kr

1

) ,

 

 

 

 

 

 

 

 

 

 

 

 

mn,m n

 

m n

 

 

 

 

 

with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a3

 

 

=

 

1

a1

, b3

 

 

=

 

1

b1

 

 

 

,

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

mn,m n

 

 

mn,m n

 

mn,m n

 

 

2 mn,m n

 

 

 

284 B Wave Functions

yields

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

(kr

)

M 3

(kr) =

 

A1

 

 

3

mn

 

 

mn,m n

 

0

 

 

m n

1

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

+B1

 

(kr

0

)N 3

 

(kr

),

 

 

 

 

mn,m n

 

m n

 

1

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(kr

)M

 

(kr

)

N 3

(kr) =

 

B1

 

3

mn

 

 

mn,m n

 

0

 

 

m n

1

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

+A1

 

(kr

0

)N 3

 

(kr

).

 

 

 

 

mn,m n

 

m n

 

1

 

 

 

 

For r1 < r0, we represent the radiating vector spherical wave functions as

M 3

(kr) =

 

1

2π π

(

j) m

 

(β, α) Q(k, β, α, r

)ejk(β,α)·r1

2πjn+1

 

mn

 

0 0

 

 

mn

0

 

 

 

× sin β dβ dα,

 

 

 

 

 

 

proceed as in the case of regular vector spherical wave functions, and obtain

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

M mn3

(kr) =

Amn,m3

n (kr0)M m3 n (kr1)

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+B3

 

(kr

0

)N 3

 

(kr

 

),

 

 

 

 

 

 

mn,m n

 

 

m n

 

1

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

N

3

(kr) =

 

B3

 

 

 

 

(kr

)M

3

(kr

)

 

mn

 

 

 

mn,m n

 

0

 

 

 

m n

1

 

 

 

 

n =1 m =−n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+A3

 

(kr

 

)N

3

 

(kr

),

 

 

 

 

 

 

mn,m n

0

 

 

m n

 

1

 

 

 

 

 

where

A3mn,m n (kr0) =

Bmn,m3 n (kr0) =

 

 

jn −n

 

 

 

2π π

 

m

|(β)π|

m

|(β)(B.70)

 

 

 

 

 

 

 

 

 

 

 

mm π|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π nn (n + 1) (n + 1)

 

0

0

 

 

n

 

 

 

n

 

 

 

 

m

|(β)

 

j m

m

α

Q(k, β, α, r0) sin βdβdα,

+ τn|m|(β)τn|

 

e (

 

 

)

 

 

 

jn −n

 

 

 

2π π

|

m

|(β)τ

|

m

|(β) (B.71)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π nn (n + 1) (n + 1)

 

0

 

 

0

n

 

 

n

 

 

 

+ m τn|m|(β)πn|m |(β) ej(m−m )αQ(k, β, α, r0) sin β dβ dα .

Making use of the spherical wave expansion of the quasi-plane wave Q(k, β, α, r0), we derive the series representations

B.4 Translations

285

Amn,m3 n (kr0) =

 

 

 

 

2jn −n

jn

 

 

 

 

 

 

 

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

a

(m, m

|

n , n, n ) u3

(kr

) ,

(B.72)

× 1

 

 

m−m n

0

 

 

Bmn,m3 n (kr0) =

 

 

 

2jn −n

jn

 

 

 

 

 

 

 

 

nn (n + 1) (n + 1)

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

b

(m, m

|

n , n, n ) u3

(kr

) .

(B.73)

× 1

 

 

m−m n

0

 

 

In (B.70) and (B.71) the integration with respect to the azimuthal angle α can be analytically performed and in the case of axial translation, the integral representations for the translation coe cients A3mn,m n and Bmn,m3 n read as

A3

(kz ) =

 

 

 

 

 

 

 

2jn −n

 

 

 

 

 

π2 jm2π|m|(β)π|m|

(β)

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,mn

 

0

 

nn (n + 1) (n

+ 1)

0

 

n

n

 

 

 

 

 

 

 

 

 

m

 

|m|

 

 

 

e

jkz0 cos β

sin β dβ,

 

 

 

 

 

+ τn|

|(β)τn

(β)

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B3

 

(kz ) =

 

 

 

 

 

2mjn −n

 

 

 

 

π2 jπ|m|(β)τ

|m|(β)

 

 

 

 

 

 

 

 

 

 

 

 

 

mn,mn

0

 

 

 

nn (n + 1) (n

+ 1) 0

 

n

n

 

 

 

 

 

 

 

 

 

m

|m|

 

 

 

jkz0 cos β

sin β dβ.

 

 

 

 

 

 

 

+ τn|

|(β)πn

(β) e

 

 

 

 

 

The vector addition coe cients Amn,m n and Bmn,m n can be related to the scalar addition coe cients Cmn,m n . For axial translations and positive values of m, these relations can be obtained by partial integration and by using the integral representations for the addition coe cients, the associated Legendre equation (A.13) and the recurrence relation (A.17). We obtain [150]

 

 

n (n + 1)

 

 

 

 

 

 

 

 

 

 

Amn,mn (kz0) =

 

 

 

 

 

 

 

 

 

[Cmn,mn (kz0)

 

 

 

 

 

 

 

 

 

 

n(n + 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

kz0

 

 

(n − m + 1)(n + m + 1)

 

C

mn,mn +1

(kz

)

 

 

 

 

 

 

 

 

 

n + 1

 

 

 

 

 

 

(2n + 1)(2n + 3)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n − m)(n + m)

 

 

 

 

 

 

 

 

 

+

kz0

 

 

 

C

mn,mn −1

(kz

)

 

 

 

 

 

 

 

 

 

 

n

 

(2n + 1)(2n − 1)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

m

Bmn,mn (kz0) = jkz0 Cmn,mn (kz0) .

nn (n + 1) (n + 1)

286 B Wave Functions

For negative values of the index m, the following symmetry relations can be used for practical calculations

A−mn,−mn (kz0) = Amn,mn (kz0),

B−mn,−mn (kz0) = −Bmn,mn (kz0).

The translation coe cients for axial translation can be obtained from the above recurrence relations. In general, through rotation of coordinates, the numerical advantages to a common axis can be exploited and a transformation from Oxyz to Ox1y1z1 can be accomplished through three steps [150]:

1.The coordinate system Oxyz is rotated with the Euler angles α = ϕ0, β = θ0 and γ = 0, where (r0, θ0, ϕ0) are the spherical coordinates of the position vector r0.

2.The rotated coordinate system is axially translated with r0.

3.The translated coordinate system is rotated back to the original orientation with the Euler angles α = 0, β = −θ0 and γ = −ϕ0.

The rotation-axial translation-rotation scheme gives

n

Xmn,m n (kr0) = Dmmn (ϕ0, θ0, 0)Xm n,m n (kr0) m =−n

×Dmn m (0, −θ0, −ϕ0),

where X stands for A or B. The translation addition theorem can be written in matrix form as

M p

(kr)

 

pq

 

M q

(kr

)

 

mn

 

= T

(kr0)

m n

1

 

,

N mnp

(kr)

 

N mq n (kr1)

where the pair (p, q) takes the values (1, 1), (3, 3), and (3, 1), and

 

11

 

 

 

33

 

A1

 

 

 

(kr

0

) B1

 

 

 

 

(kr

0

)

T

(kr0) = T

(kr0) =

mn,m n

 

 

mn,m n

 

 

 

 

Bmn,m1 n (kr0) Amn,m1

n (kr0)

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

A3

 

(kr

0

) B3

 

 

 

(kr

0

)

 

 

 

 

T

(kr0) =

mn,m n

 

 

mn,m n

 

 

 

 

 

 

 

 

Bmn,m3

n

(kr0) Amn,m3

n (kr0) .

 

 

We conclude this section by noticing some symmetry properties of the translation coe cients for the inverse transformation:

M p

(kr

)

 

pq

 

M q

(kr)

mn

1

 

= T

(−kr0)

m n

 

N mnp

(kr1)

 

N mq n (kr) .

B.4 Translations

287

Using the integral representation for the translation coe cients, making the transformation ϕ0 → ϕ0 + π, changing the variable of integration from β to π − β and using the identities (A.24) and (A.25), yields

Amn,m n (−kr0) = (1)n+n Amn,m n (kr0) ,

Bmn,m n (−kr0) = (1)n+n +1Bmn,m n (kr0) .

Further, since

Amn,m n (kr0) = (1)n+n A−m n ,−mn (kr0) ,

Bmn,m n (kr0) = (1)n+n +1B−m n ,−mn (kr0) ,

we obtain

Amn,m n (−kr0) = A−m n ,−mn (kr0

Bmn,m n (−kr0) = B−m n ,−mn (kr0

) ,

(B.74)

) .

(B.75)

Recurrence relations for the scalar and vector addition theorem has also been given by Chew [32, 33], Chew and Wang [35] and Kim [117]. The relationship between the coe cients of the vector addition theorem and those of the scalar addition theorem has been discussed by Bruning and Lo [29], and Chew [32].

C

Computational Aspects

in E ective Medium Theory

In this appendix we compute the basic integrals appearing in the analysis of electromagnetic scattering from a half-space of randomly distributed particles. Our derivation follows the procedures described by Varadan et al. [236], Tsang and Kong [223, 226], and Tsang et al. [228].

C.1 Computation of the Integral Imm1 n

The integral Imm1 n is

Imm1 n = ejKe·r0p u3m −mn (ksrlp) dV (r0p) ,

Dp

where Ke = Ksez , and the integration domain Dp is the half-space z0p 0, excluding a spherical volume of radius 2R centered at r0l. The volume integral can be transformed into a surface integral by making use of the following result. Let u and v be two scalar fields satisfying the Helmholtz equation in the bounded domain D, with the wave numbers Ks and ks, i.e.,

u + Ks2u = 0, v + ks2v = 0.

Then, from Green’s theorem we have

 

1

 

 

 

 

 

 

 

D uvdV =

 

D (vu − uv) dV

 

ks2 − Ks2

 

1

 

 

∂u

 

∂v

 

 

=

 

 

v

 

− u

 

dS,

 

ks2 − Ks2

S

∂n

∂n

where S is the boundary surface of the domain D, and n is the outward unit normal vector to S. Using this result we transform the integral Imm1 n as follows:

290 C Computational Aspects in E ective Medium Theory

z

Op

r0p rlp

r0l

O

S

θlp 2R

Ol SR RSz

Fig. C.1. Integration surfaces SR , Sand Sz

1

 

1

 

 

3

 

 

 

 

e

jK

r

 

Imm n =

 

 

 

 

 

 

um −mn (ksrlp)

 

 

e·

0p

k2

K2

 

∂n

 

 

s

s SR SSz

 

 

 

 

 

 

 

 

 

 

 

ejKe·r0p

∂um3 −mn

(k r

 

) dS (r

 

) .

 

 

 

 

 

 

 

∂n

 

s

lp

 

0p

 

 

 

 

 

 

The integral can be decomposed into three integrals

Imm1 n = Imm1,R n + Imm1,∞ n + Imm1,z n ,

where Imm1,R n is the integral over the spherical surface SR of radius 2R cen-

1,∞

tered at r0l, Imm n is the integral over the surface of a half-sphere Swith radius Rin the limit R→ ∞, and Imm1,z n is the integral over the xy- plane Sz (the plane z = 0). The choice of the integration surfaces is shown in Fig. C.1.

Using the identity r0p = r0l + rlp and replacing, for convenience, the variables rlp, θlp and ϕlp by r, θ and ϕ, respectively, we obtain

Imm1,R

n =

1

 

ejKsz0l

 

 

 

 

 

 

 

 

 

 

ks2 − Ks2

 

 

 

 

 

 

 

 

 

 

 

 

 

!h(1)

(ksr) P |m −m|

(cos θ) ej(m −m)ϕ

ejKe·r

 

 

 

 

 

 

× SR

 

n

 

 

n

 

 

 

∂r

 

 

ejKe·r

 

h(1) (ksr) P |m −m| (cos θ) ej(m −m)ϕ" dS(r),

 

∂r

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

whence, taking into account the series representation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

+ 1

 

 

 

 

 

ejKe·r =

2jn

 

 

 

 

 

 

jn (Ksr) Pn (cos θ)

(C.1)

 

 

2

 

 

 

 

 

 

n =0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете Оптика