Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Vankka J. - Digital Synthesizers and Transmitters for Software Radio (2000)(en)

.pdf
Скачиваний:
67
Добавлен:
15.08.2013
Размер:
14.63 Mб
Скачать

316

Chapter 15

log part of the modulator i.e. the D/A-converter was inserted into the area reserved by the black-box. This manual editing also involved the addition of the bonding pads and the decoupling capacitors. A number of diodes were also added to protect the chip from the charges induced during the manufacturing process.

DIFFERENTIAL NONLINEARITY is 0.826 LSB

 

2

 

 

 

 

 

 

 

 

[LSB]

1.5

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

DNL

0

 

 

 

 

 

 

 

 

-0.5

 

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

-1.5

 

 

 

 

 

 

 

 

 

-2

2000

4000

6000

8000

10000

12000

14000

16000

 

 

 

 

INTEGRAL NONLINEARITY is 1.035 LSB

 

 

2

 

 

 

 

 

 

 

 

[LSB]

1.5

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

INL

 

 

 

 

 

 

 

 

-0.5

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1.5

 

 

 

 

 

 

 

 

 

-2

2000

4000

6000

8000

10000

12000

14000

16000

 

 

 

 

 

 

 

Input Code

 

 

 

SFDR (dBc)

Figure 16-14. Typical INL and DNL.

SFDR vs. Output Frequency

95

90

85

80

75

fs = 76.8MHz

70

65

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

55

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

450

5

10

15

20

25

30

35

 

 

Output Frequency (MHz)

 

 

Figure 16-15. SFDR as function of output frequency at full-scale (0 dBFS).

A GSM/EDGE/WCDMA Modulator with On-Chip D/A Converter for

317

Base Stations

 

The Design Rule Check (DRC) and the Layout Versus Schematic (LVS) were performed for the final layout using Mentor IC-station and Design Architect. After the successful DRC and LVS checks, the final layout was transferred to the fabrication in the GDSII format. The chip was fabricated using a 0.35 m CMOS technology.

Max/R f Lvl

Marker

[T1

 

RBW

1 MHz R

Att

20 dB

14 dBm

 

92

dB m

VBW

1 MHz

 

 

dBm

17 dBm

513 26653

 

SWT 800 s

Unit

 

7 dB Offset

LIMIT CHECK : PASSED

1

-10

-20

-30 EDG _T_U

-40

-50

ED E_T_L

-60

 

-70

 

-80

TR

 

-8

 

Center 19 2 MHz

80 s/

Figure 16-16. Transmitted power level of the EDGE burst versus time. The carrier frequency is 19.2 MHz.

Table 16-3 Spectrum due to Switching Transients (Peak-Hold Measurement, 30 kHz Filter Bandwidth, Reference 300 kHz with zero offset)

Offset

Maximum Power Limit

Measured Maximum

Measured Maximum

(kHz)

(dBc)

Power (dBc) at Digital

Power (dBc) at D/A

 

 

 

 

 

Output

converter Output

 

(GMSK)

 

(8-PSK)

(GMSK)

(8-PSK)

(GMSK)

(8-PSK)

 

 

400

- 60

 

-55

-77.3

-77.7

-65.64

-65.53

600

- 70

 

-65

-95.2

-94.2

-75.1

-75.36

1200

- 77

 

-77

-106.3

-106.8

-80.55

-78.57

1800

- 77

 

-77

-106.9

-107.7

-79.92

-79.23

 

 

 

 

 

 

 

 

318

Chapter 15

 

 

 

Marke

r

 

 

 

[T1

 

 

RBW

30 kHz

 

R

 

Att

10 dB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref Lvl

-12.29

dBm

VBW

30

kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2.4 dBm

19.97474950

MHz

SWT

76

ms

Unit

dBm

-2.

LIMITCHECK : PASSED

 

-1

 

-2

 

-3

 

-4

 

-5

 

-6

 

-7

GSM_SPEC

 

-8

-9

-100

-110

-122

 

360 kHz/

 

 

 

Cente

20 MHz

Span

3.6

MHz

Figure 16-17. Power spectrum of GSM signal.

Ref

Lvl

-2 dBm

-2

 

M

 

 

 

 

RBW

30

kHz

 

 

 

 

arker 1 [T1]

 

 

 

R

 

Att

10 dB

 

 

 

 

 

 

 

 

 

13.41

dB

m

VBW

30

kHz

 

 

 

 

 

 

 

 

 

 

20.00360721

MHz

SWT

76

ms

Unit

dBm

LIMIT CHECK : PASSED

-10

1

-20

-30

-40

-50

-60

-70

-80

EDGE_SPEC

-90

-102

enter 2 MH

360

kHz/

pan

3 6

H

Figure 16-18. Power spectrum of EDGE signal.

A GSM/EDGE/WCDMA Modulator with On-Chip D/A Converter for

319

Base Stations

 

16.9 D/A Converter

As the multicarrier feature requires high dynamic range requirements for the D/A converter, the wordlength was chosen to be 14 bit. The 14-bit on-chip D/A converter is based on a segmented current steering architecture [Bos01]. It consists of a 6b MSB matrix (2b binary and 4b thermometer coded), and an 8b binary coded LSB matrix (Figure 16-12). The static linearity is achieved by sizing the current sources for intrinsic matching [Bos01] and by using layout techniques; this is a prerequisite for obtaining good dynamic linearity. The cascode structure is used to increase the output impedance of the unit current source, which improves the linearity of the D/A-converter.

The dynamic linearity is important in this IF modulator because of the strongly varying signal. Therefore, well-designed and carefully laid out switch drivers and current switches are used. A major function of the switch driver in Figure 16-12 is to adjust the crosspoint of the control voltages, and to limit their amplitude at the gates of the current switches, in such a way that these transistors are never simultaneously in the off state and that the feedthrough is minimized. The crossing point of the control signals is set by delaying the falling edge of the signal [Tak91]. Dummy switch transistors are used to improve the synchronization of the switch transistors control sig-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

arker 1 [T1]

 

 

 

RBW 30 kHz

R

 

Att

1 dB

 

 

 

 

 

 

 

 

 

 

 

Ref Lvl

 

 

 

- 44 25

dB

m

VBW 30 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-22

dBm

 

19.98250000

MHz

SWT 200 ms

Unit

dBm

-2

 

1 [T1]

-44.25 dBm

 

 

-30

 

 

19.98250000

MHz

 

CH PWR

-24.09

dBm

 

 

-4

 

ACP

Up

6.56

dB

 

ACP

Low

-65.84

dB

 

 

 

 

ALT1

Up

-67.67

dB

-5

 

ALT1

Low -67.88

dB

-6

 

 

 

 

 

-7

 

 

 

 

 

-8

 

 

 

 

 

-9

 

 

 

cu2

 

 

 

 

 

 

-100

 

C0cu1

cu1cu2

 

 

 

 

 

 

 

 

 

 

-110

 

cI1 C0

 

 

 

 

 

 

 

 

 

cI2

 

 

 

 

-122

 

3 MHz/

 

 

 

Cente

20 MHz

 

Span 30 MHz

Figure 16-19. Power spectrum of WCDMA signal.

320

Chapter 15

nals. Disturbances connected to the external bias current are filtered out onchip with a simple one pole low-pass filter. The D/A-converter is implemented with a differential design, which results in reduced even-order distortions and provides a common-mode rejection of disturbances.

16.10 Measurement Results

To evaluate the multi-standard modulator, a test board was built and a computer program was developed to control the measurements. Figure 16-13 illustrates the block diagram of the multi-standard modulator test system. The on-chip D/A converter was used in measurements. Measurements are performed with a 50 doubly terminated cable. The sampling rate of the D/A converter was 76.8 MHz in the measurement. Figure 16-14 shows that typical integral linearity (INL) and differential linearity (DNL) errors are

Table 16-4

Performance Summary

Signal Quality

Measured at

 

GSM Phase Error

EDGE EVM (%)

 

WCDMA EVM

 

 

(°)

 

 

 

 

 

(%)

 

 

 

 

 

 

 

 

 

 

 

peak

rms

peak

rms

rms

 

 

 

 

 

 

 

 

 

Digital Data at

 

0.75

0.29

 

1.263

0.27

 

1.11

D/A Converter Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog Signal at

D/A

1.71

0.74

 

1.55

0.37

 

1.18

Converter Output

 

 

 

 

 

 

 

 

Specifications at

the

20

5

 

22

7.0

 

17.5

base station RF port

 

 

 

 

 

 

 

 

 

 

Spectral Properties

 

 

 

 

 

 

 

 

 

 

 

 

GSM

 

 

EDGE

WCDMA

 

 

 

 

 

 

 

 

 

 

 

600 kHz offset

 

600 kHz

ACLR1

ACLR2

 

 

 

 

 

offset

 

 

 

 

 

 

 

 

 

 

 

 

Digital Data at

 

-100

 

 

-90

72.9

 

73.3

D/A converter input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog Signal at

D/A

-87.34

 

 

-84.58

65.84

 

67.67

Converter Output

 

 

 

 

 

From Figure

From Figure

 

 

 

 

 

 

16-19

 

16-19

Specifications at

the

-70

 

 

-70

45

 

50

base station RF port

A GSM/EDGE/WCDMA Modulator with On-Chip D/A Converter for

321

Base Stations

 

1.04/0.83 LSB, respectively. The spurious free dynamic range (SFDR) is shown as a function of the output frequency in Figure 16-15. The SFDR to Nyquist frequency is better than 80 dBc at low synthesized frequencies, decreasing to 62 dBc at high synthesized frequencies in the output frequency band (single tone).

Figure 16-16 shows the measured ramp up and down profiles of the transmitted burst, which satisfy the EDGE base station masks. The allowed power of spurious responses originating from the power ramping before and after the bursts is specified by the switching transient limits. Some margin (3 dB) has been left between the values in [GSM99c] and the values specified for this implementation in Table 16-3 to take care of the other transmitter stages that might degrade the spectral purity of the signal. The power levels measured at the digital output and the D/A converter output meet the limits shown in Table 16-3

The output signal in Figure 16-17 meets the GSM spectrum mask requirements [GSM99c]. The output signal in Figure 16-18 meets the EDGE spectrum mask requirements [GSM99c]. Figure 16-19 shows the WCDMA

Ref Lvl -9 dBm

1 5

IMAG

T1

CF

20 MHz

Meas Signal

 

 

 

 

SR

270.833 k

Hz

 

Constellation

 

 

 

Demod 3 /8-8PSK

 

 

 

 

 

 

 

 

 

 

 

A

-1.5

-4.1666667

REAL

4.1666667

 

 

 

CF

20 MHz

Ref Lvl

 

 

SR

270.833 k

Hz Symbol/Errors

-9 dBm

 

 

 

 

 

 

Demod 3 /8-8PSK

 

 

 

 

 

 

 

Symbol

Table

 

 

 

 

 

 

 

 

 

010101011 00010111 00000111 10101011 01000001

40

11111110

01000110

00111000

01111001

11110010

B

80

00010101

01110010

00111101

01110011

00100110

 

 

 

 

Error

Summary

 

 

Error Vector Mag

0.37

% rms

1.55

%

Pk

at

sym

0

Magnitude Error

0.23

% rms

-1.52

%

Pk

at

sym

0

Phase Error

0.17

deg rms

-0.42

deg

Pk

at

sym

2

Freq Error

-64.57

mHz

-64.57 mHz Pk

 

Amplitude Droop

0.18

dB/sym

Rho Factor

1.0000

IQ Offset

0.06

%

IQ Imbalance

0.02 %

Figure 16-20. Measured EVM errors in EDGE mode.

322

Chapter 15

output with a crest factor of 11.43 dB, where the adjacent channel leakage powers (ACLR1/2) are 65.84 and 67.67, respectively. Figure 16-20 shows the error vector magnitude (EVM) performance in EDGE mode, where the measured rms EVM is 0.37% with a maximum peak deviation of 1.55%. The signal performance is summarized in Table 16-4. The phase error, EVM and spectral performance [FDD00], measured at the digital output and the D/A converter output, meet the specifications shown in Table 16-4. In the multistandard IF modulator, most of the errors are generated less by quantization errors in the digital domain and more by the D/A converter analog nonidealities, as shown in Table 16-4. There is some margin in the D/A converter output for taking care of the other transmitter stages that might degrade the signal quality. Combining a number of parallel modulator outputs allows the formation of multi-carrier signal in Figure 16-6. Figure 16-21 shows the multi-carrier signal at the D/A converter output. The first adjacent channel leakage power ratio is 57.19 dB, which meets the specification (45 dB) [FDD00].

16.11 Conclusions

A GSM/EDGE/WCDMA modulator with a 14-bit on-chip D/A converter was implemented. The pre-compensation filter, which compensates the sinc droop above the Nyquist frequency, makes it possible to use WCDMA signal images for up-conversion. The new programmable up/down unit allows power ramping on a time-slot basis as specified for GSM, EDGE and TDDWCDMA. The multi-standard modulator meets the spectral, phase, and EVM specifications. The die area of the chip is 22.09 mm2 in 0.35 m CMOS technology. Power consumption is 1.7W at 3.3V with 110 MHz (maximum clock frequency). The IC is in a 160-pin CQFP package. Figure 16-22 displays the chip micrograph.

 

 

Marker 1 [T1]

 

Ref Lvl

 

- 13.70

dBm

 

18.00000000

MHz

6 dBm

 

0

 

 

 

-10

 

 

 

-20

 

 

 

-30

 

 

 

-40

 

 

 

-50

 

 

 

-60

 

 

 

-70

 

 

 

-80

cl1

cl1

 

 

 

 

-90

 

 

 

RBW 30 kHz

 

 

 

 

 

RF Att

0 dB

VBW 300 kHz

 

 

 

 

 

 

 

SWT 50 ms

 

 

 

 

 

Unit

 

 

 

 

 

 

dBm

 

1

 

[T1]

 

 

 

-13

 

.70 dBm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18.00000

 

00 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

PWR

 

 

 

 

7.06

 

dBm

 

ACP

UP

 

 

 

 

 

 

 

 

 

 

 

 

-

57

 

.19 dB

ACP

LOW

 

 

 

 

 

 

-

58

 

.00 dB

cu1

cu1

 

Center 17.5 MHz

3.5 MHz/

Span 35 MHz

Figure 16-21. Power spectrum of multi-carrier WCDMA signal.

A GSM/EDGE/WCDMA Modulator with On-Chip D/A Converter for

323

Base Stations

 

REFERENCES

[Ana01] "AD6623 Four Channel, 104 MSPS Digital Transmit Signal Processor (TSP)," Analog Devices Preliminary Technical Data Sheet, May 2001. [Bel74] M. G. Bellanger, and J. L. Daguet, "TDM-FDM Transmultiplexer: Digital Polyphase and FFT," IEEE Trans. on Commun., Vol. COM-22, pp. 1199-1204, Sept. 1974.

[Bha99] Bhatnagar, H, Advanced ASIC Chip Synthesis Using Synopsys® Design Compiler™ and PrimeTime®, Kluwer Academic Publishers, USA

1999.

[Bos01]A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, "A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter," IEEE J. Solid-State Circuits, Vol. 36, No. 3, pp. 315-324, Mar. 2001. [Cho01] K. H. Cho, and H. Samueli, "A Frequency-Agile Single-Chip QAM Modulator with Beamforming Diversity," IEEE J. of Solid State Circuits, Vol. 36, No. 3, pp. 398–407, Mar. 2001.

[Cor90] I. R. Corden, and R. A. Carrasco, "Fast Transform Based Complex Transmultiplexer Algorithm for Multiband Quadrature Digital Modulation Schemes," IEE Proceedings, Vol. 137, Pt. 1, No. 6, pp. 408-416, Dec. 1990. [Dig99] Digital cellular telecommunication system (Phase 2+); Modulation (GSM 05.04) V8.1.0, European Telecommunications Standards Institute,

Figure 16-22. Chip micrograph

324

Chapter 15

December 1999.

[Eru93] L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in Digital Modems Part II: Implementation and Performance," IEEE Trans. on Commun., Vol. COM-41, pp. 998-1008, June 1993.

[Far88] C. W. Farrow, "A Continuously Variable Digital Delay Element," in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), June

1988, pp. 2641-2645.

[FDD00] 3rd Generation Partnership Project; Technical Specification Group Radio Access Networks; UTRA (BS) FDD; Radio transmission and Reception, 3G TS 25.104, V3.3.0, June 2000.

[Fli92] N. J. Fliege, and J. Wintermantel, "Complex Digital Oscillators and FSK Modulators," IEEE Trans. on Signal Processing, Vol. SP-40, No. 2, pp. 333-342, Feb. 1992.

[Fli94] N. J. Fliege, Multirate Digital Signal Processing, John Wiley & Sons, 1994.

[Fur99] A. Furuskär, S. Mazur, F. Muller, and H. Olofsson, "EDGE: Enhanced Data Rates for GSM and TDMA/136 Evolution," IEEE Personal Communications, June 1999, pp. 56-66.

[GPP00a] 3GPP Technical Specification Group Radio Access Network, Spreading and Modulation (FDD), TS 25.213 V3.2.0, March 2000. [GPP00b] 3GPP Technical Specification Group Radio Access Network, UTRA (BS) FDD; Radio transmission and Reception, TS 25.104 V3.3.0, June 2000.

[GPP00c] 3GPP Technical Specification Group GERAN, Digital cellular telecommunication system (Phase 2+); Radio transmission and reception, TS 05.05 V8.6.0, September 2000.

[Gra01] "GC4116 Multi-standard Quad DUC Chip," Graychip Data Sheet, April 2001.

[GSM99a] GSM Recommendation 05.04: "Modulation," Dec. 1999. [GSM99b]GSM Recommendation 05.02: "Digital Cellular Telecommunications System (Phase 2+); Multiplexing and Multiple Access on the Radio Path," July 1999.

[GSM99c] GSM Recommendation 05.05: "Radio Transmission and Reception," Dec. 1999.

[Hau93] J. C. Hausman, R. R. Harnden, E. G. Cohen, and H. G. Mills, "Programmable Canonic Signed Digit Filter Chip," U. S. Patent 5,262,974, Nov. 16, 1993.

[Im00] S. Im, W. Lee, C. Kim, Y. Shin, S. H. Lee, and J. Chung, "Implementation of SDR-Based Digital IF Channelizer/De-Channelizer for Multiple CDMA Signals," IEICE Trans. Commun., Vol. E83-B, No. 6, pp.

1282-1289, June 2000.

A GSM/EDGE/WCDMA Modulator with On-Chip D/A Converter for

325

Base Stations

 

[Int01] "ISL5217 Quad Programmable UpConverter," Intersil Corporation Data Sheet, April 2001.

[Jun94] P. Jung, "Laurent's Representation of Binary Digital Continuous Phase Modulated Signals with Modulation Index 1/2 Revisited," IEEE Transactions on Communications, Vol. 42, No. 2/3/4, February/March/April 1994, pp. 221-224.

[Ket03] J. Ketola, J. Vankka, and K. Halonen, "Synchronization of Fractional Interval Counter in Non-Integer Ratio Sample Rate Converters," in Proc. ISCAS’03, Vol. II, May 2003, pp. 89-92.

[Kos01] M. Kosunen, J. Vankka, M. Waltari, and K. Halonen, "A Multicarrier QAM Modulator for WCDMA Basestation with on-chip D/A Converter," in Proc. Custom Integrated Circuits Conf., May 2001, San Diego, USA, pp. 301-304.

[Kur82] C. F. Kurth, K. J. Bures, P. R. Gagnon, and M. H. Etzel, "A PerChannel, Memory-Oriented Transmultiplexer with Logarithmic Processing," IEEE Trans. on Commun., Vol. COM-30, pp. 1520-1527, July 1982.

[Lau86] P. Laurent, "Exact and Approximate Construction of Digital Phase Modulations by Superposition of Amplitude Modulated Pulses (AMP)," IEEE Transactions on Communications, Vol. COM-34, No. 2, February 1986, pp. 150-160.

[Mur81] K. Murota, "GMSK Modulation for Digital Mobile Radio Telephony," IEEE Transactions on Communications, Vol. 29, pp. 1044-1050, July 1981.

[Par99] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons, 1999.

[Paš01] R. Paško, L. Rijnders, P. R. Schaumont, S. A. Vernalde, and D. Ćuraþková, "High-Performance Flexible all-digital Quadrature up and down Converter Chip," IEEE J. of Solid State Circuits, Vol. 36, No. 3, pp. 408-

416, Mar. 2001.

[Sam88] H. Samueli, "The Design of Multiplierless FIR Filters for Compensating D/A Converter Frequency Response Distortion," IEEE Trans. Circuits and Syst., Vol. 35, No. 8, pp. 1064-1066, Aug. 1988.

[Sam89] H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters with Powers-of-Two Coefficients," IEEE Trans. Circuits and Syst., Vol. 36, No. 7, pp. 1044-1047, July 1989.

[Sam91] H. Samueli, "On the Design of FIR Digital Data Transmission Filters with Arbitrary Magnitude Specifications," IEEE Transactions on Circuits and Systems, Vol. 38, No. 12, Dec. 1991, pp. 1563-1567.

[Sch81] H. Scheuermann, and H. Göckler, "A Comprehensive Survey of Digital Transmultiplexing Methods," Proc. of IEEE, Vol. 69, No. 11, pp.

1419-1450, Nov. 1981.

Соседние файлы в предмете Химия