Скачиваний:
31
Добавлен:
15.08.2013
Размер:
865.77 Кб
Скачать

5. Chiroptical properties of compounds containing CDO groups

185

O

 

R

14

 

 

 

 

 

 

 

8 R

O

 

 

 

 

 

O

 

 

 

 

 

(31)

 

 

(32)

R = H

0.28 (317), +0.36 (283)

0.90 (302)

 

 

R = CH3

0.12 (319), +1.50 (289)

 

 

R = OH

0.22 (319), +1.04 (288)

 

 

R = OAc

0.11 (320), +0.96 (280)

 

OH

R = CH2 OH

0.10 (323), +1.13 (292)

 

 

 

R = CH2 OAc

0.10 (323), +1.22 (289)

A

B

 

 

 

O

(33)

0.31 (315), +0.36 (283)

O

O

(34)

(35)

0.34 (305), +0.12 (272)

0.12 (320), +1.59 (290)

and twist forms with variable ratios. This equilibrium was affected by minor changes at remote positions and by the polarity of the solvent. An increase of the steric bulkiness of the 8ˇ-substituent increased the A-ring twist population. Introduction of an 8˛-substituent in 33 decreased the flexibility of the B-ring, thus increasing the A-ring chair population120.

X-ray crystallographic analysis revealed that methyl cis-tetrahydro-˛- (36) and -ˇ- santoninate (37) have a nonsteroid decalone conformation in the solid state. Furthermore, positive Cotton effects shown by both cis-fused decalone analogues indicated the presence of such nonsteroid conformation (38) in solution, in accord with the octant rule121.

186

 

 

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

R2

 

O

 

 

H

 

R1

 

OH

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

OH

 

 

O

 

 

(36) R1 = CH3 , R2 = CO2 CH3

+0.67 (284), +0.78 (213)

(38)

 

(37) R1 = CO2 CH3 , R2 = CH3

+0.58 (284)12 1

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

O

 

 

 

R2

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

R1 = H, R2 = α-CH3

+0.83 (285),

+1.03 (215)

 

 

 

 

R1 = H, R2 = β-CH3

+0.91 (285),

0.72 (215)

 

 

 

 

R1 = OH, R2 = α-CH3

+0.64 (282),

+1.33 (215)

 

 

 

 

R1 = OH, R2 = β-CH3

+0.66 (283),

0.59 (220)12 2

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

H

 

 

 

 

 

O

H

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

AcO

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

O

 

 

 

O

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2 OR2

 

 

 

 

 

 

 

 

(39)

 

 

 

 

(40)

 

 

1

R

2

3

 

 

3.14 (299), +4.26 (242)12 6

 

 

R

 

R

 

 

 

 

 

 

 

H

H

 

H

 

0.89 (299)12 3

 

 

 

 

H

Ac

H

 

0.51 (300), 0.40 (225)12 3 ,12 4

 

 

 

OH

H

 

H

 

0.87 (302)12 5

 

 

 

 

OH

Ac

H

 

0.52 (301)12 5

 

 

 

 

10β-OH OAc

Ac

OH

 

0.71 (298), 0.62 (225)12 6

 

 

5. Chiroptical properties of compounds containing CDO groups

187

O H

O

AcO

O

 

O

O

(41)

+1.74 (296), 0.65 (252)12 6

O H

O

AcO

O

 

O O

(43)

+2.29 (288), 3.77 (232)12 6

O

O

H

O

 

 

 

O

AcO

 

O

 

 

 

 

 

O

O

 

 

 

 

 

(42)

 

 

2.20 (289), +2.30 (225)12 6

O

O

H

O

 

 

 

 

 

 

O

AcO

H

 

 

 

O

 

 

 

 

 

O

O

 

 

 

 

 

O

 

 

 

 

(44)

 

+0.18 (320),

+0.22 (308),

 

+0.10 (300),

0.26 (276)12 6

New diterpenoids belonging to neo-clerodane type (39), some having an unusual neo- clerodane rearranged skeleton with eight-membered ketone ring (40 44), were recently described126.

O

 

 

O

O

 

 

 

 

 

H

 

 

 

 

O

 

 

 

 

H

O

 

 

O

H

 

O

 

 

O

 

 

 

 

O

 

 

O

 

O

 

O

 

O

OH

 

OAc

 

 

CH2 OAc

 

CH2 OAc

 

+0.93 (303)12 7

2.00 (295)12 7

 

+1.98 (298)12 8

 

188

Stefan E. Boiadjiev and David A. Lightner

 

 

 

H

O

 

 

 

 

 

 

 

 

 

O

 

H

O

 

H

 

O

AcO

 

O

 

 

 

 

 

 

O

 

AcO

OAc

 

 

 

 

 

O

OH

R

 

H

 

 

 

 

 

OAc

 

R = H sh0.20 (312),

0.51 (293),

0.06(250)

+1.95 (290)13 0

 

R = OH sh0.23 (315),

0.57 (295),

0.08 (252)12 9

 

O

 

 

 

 

 

 

 

 

 

O

 

 

O

O

 

R1

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

R4

 

OH

+0.58 (310), 0.10 (269)13 1

O

O

H

0.15 (305)13 2

 

 

 

H

 

R3

 

 

 

 

 

 

 

 

 

R2

 

 

R1

R2

R3

R4

 

(45) OH

OH

OAc

OH

0.73(314)132

 

 

 

 

 

0.75(312)133

 

H

OH

OAc

OH

0.97(300)132

 

H

OH

OAc

H

1.94(303)132

 

 

 

 

 

2.71(312)133

 

H

OAc

OH

OH

1.67(305)132

 

H

OAc

H

OH

0.18(305)132

 

H

H

H

OH

0.27(305)132

The absolute stereochemistry of forskolin (45) and of the C 6 and C 7 dibenzoyl derivative (46) was unequivocally assigned by applying the exciton chirality method, thus placing R3 (OAc in 45) substituent at ˇ-position134.

CD data for n ! Ł Cotton effect of D:A-friedo-oleanones (47 51) have been interpreted on the basis of the octant rule, with the prediction that the D and E rings adopt a boat-boat conformation for 48 and 50138.

Intermediate-intensity positive n ! Ł Cotton effects (all in dioxane) of the 3- oxotriterpenoids 54, 57 59 were attributed to an A-ring chair-boat conformational equilibrium. The contribution of the boat form (like in 2ˇ-methyl model derivatives 53 and 56) was estimated to be ca 30%140.

5. Chiroptical properties of compounds containing CDO groups

O

O

 

 

 

 

 

 

O

 

 

 

OH

 

 

H

 

 

H

H

 

 

 

 

 

 

R1

 

H

 

OBz

R2

 

 

 

 

 

 

 

 

 

OBz

 

O

 

 

 

 

 

(46)

+15.18 (239), 2.42 (221)134

OH

H

O

RO

OH

O O

OR

R = H +1.44 (287)

R = Ac +0.30 (280)136

HO

O

H

H H

O

R3

 

 

 

R1

R2

R3

 

H

H

H

2.68(290)135

H

OAc

H

1.47(300)135

OAc

H

H

2.36(298)135

H

H

OAc

3.17(300)135

 

 

 

OH

R

 

 

OH

OH

R = H +1.60 (287)

R = OH +1.03 (290)136

2.18 (285)137

189

OH

190

Stefan E. Boiadjiev and David A. Lightner

R5

R6

R1

 

 

R2

 

 

R4

 

 

 

 

 

 

 

 

R3

 

 

 

 

R1

R2

R3

R4

R5

R6

∆ε(CHCl3 )

λmax

(47)

O

H2

H2

H2

H2

H2

1.17

293

(48)

H2

O

H2

H2

H2

H2

3.46

294

(49)

H2

H2

O

H2

H2

H2

+2.49

293

(50)

H2

H2

H2

H2

O

H2

+8.98

295

(51)

H2

H2

H2

H2

H2

O

+2.38

294

O

HO

OH

OH

HO

5.36 (284), 14.51 (213)139

 

 

H

O

 

 

 

H

 

 

 

 

 

 

R2

 

R

2

 

 

CN

 

 

 

 

 

R1

 

 

R1

 

 

 

 

O

 

 

O

 

 

 

 

(52)

R1 = CH3 , R2 = H

0.60(293)

(55)

R1

= CH3 , R2 = H

0.71(292)

(53)

R1 = H, R2 = CH3

+3.65(294)

(56)

R1

= H, R2 = CH3

+3.85(291)

(54)

R1 = R2 = H

+0.76(293)

(57)

R1

= R2 = H

+0.55(292)

5. Chiroptical properties of compounds containing CDO groups

O

H H

O

 

O

 

(58)

+0.63 (293)

(59)

+0.73 (293)

 

HO

 

 

 

R2

 

OH

O

R1

 

 

 

O

 

R1

= O, R2 =

OH

+0.35

(293)141

+0.37 (292)141

H

 

 

 

 

 

R1

= H,H, R2 = O

0.60

(287)141

 

 

 

 

R

 

OR

 

 

 

R

 

OR

 

 

 

 

HO

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

H

 

 

 

 

O

 

 

O

 

R = bond

2.70 (292)

R = H

 

2.11

(292)

R = HO

1.43 (300)

 

 

 

 

 

 

O

2.88 (292)142

R = Me2 C

 

1.95

(291)142

R = Me2 C

 

 

 

 

O

191

Br

192

Stefan E. Boiadjiev and David A. Lightner

OH

OH

 

O

 

 

HO

 

H

 

H

 

 

 

O

O

 

 

2.04 (293)142

1.79 (292)142

 

OH

 

R

 

 

 

 

OH

 

R

 

 

 

O

O

 

 

 

H

 

H

 

 

 

O

 

O

2.64 (292)142

R = bond

2.95 (291)

 

 

 

R = HO

3.51 (294)142

H

 

H

 

R1

 

R1

 

 

 

 

 

 

 

 

 

 

 

H

 

 

H

R2

 

R2

 

 

R1 = CH2 , R2 = O

 

R1 = CH2 , R2 = O

 

+0.75 (317),

+1.22 (307),

+0.67 (319),

+1.23 (309),

+1.22 (298),

6.10 (212)143

+1.11 (294),

+11.0 (198)143

R1 = O, R2 = α-OAc,β-H

R1 = O, R2 = α-OAc,β-H

 

 

sh +0.07(315), sh +0.17 (302),

+2.72 (292),

+0.80 (205)143

+0.28 (287),

1.30 (199)143

R1 = O, R2 = α-H,β-OAc

R1 = O, R2 = α-H,β-OAc

+0.06 (319),

+0.01 (306),

+2.23 (288)143

+0.13 (278),

1.60 (201)143

 

 

5. Chiroptical properties of compounds containing CDO groups

193

HO

HO O

H

HO

H

HO

H

OH

2.48 (295)144

R2

R2

O

O

H

 

 

H

 

 

 

R1

 

R1

 

 

R2 = CH(CH3 )CH2 CH2 CO2 CH3

 

 

 

R1 = H

0.82 (292)

R1 = CH3

+1.27 (289)

R1 = CH3

0.39 (285)

R1 = (CH3 )2

0.27 (309)145

R1 = (CH3 )2

0.94 (299)145

 

 

O

 

 

 

 

 

 

 

 

O

 

C8 H17

 

 

 

BnO

 

 

 

 

 

 

 

 

H

 

 

 

 

OH

O

O

H

 

 

 

 

 

+1.01 (296)146

 

 

sh 1.3 (305),

1.55 (293),

 

 

 

 

1.06 (247),

+4.7 (212)147

194

RO

Stefan E. Boiadjiev and David A. Lightner

 

O

 

 

 

 

O

 

 

 

 

 

14β-H, R = H

 

 

 

 

2.97 (313),

3.10 (304),

 

 

 

0.39 (248),

+2.2 (220)

 

 

 

R = Ac

 

 

H

 

4.11 (308),

+2.3 (223)

 

 

14α-H R = H sh +1.12(315),

 

 

 

 

H

O

+2.48(292),

+4.2 (211)

 

 

R = Ac

 

 

 

 

 

 

 

 

sh +1.16 (316),

 

H

 

+2.80 (296),

+3.7 (211)147

 

 

O

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

H

 

 

 

 

O

O

 

 

 

H

 

O H

O

H

 

 

O

OH

 

 

 

 

 

RO

 

 

O

OH

 

 

 

 

O

R = H 1.61 (294), sh 0.98 (257),

+2.76 (294)148

+5.9 (212)

 

 

 

R = Ac 1.67 (293), sh 1.16 (257),

 

 

 

+4.9 (212)147

O

O

HO

OAc

AcO

N

H

3.91 (309), 1.29 (252)149

+4.57 (310)150

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups