

5. Chiroptical properties of compounds containing CDO groups |
185 |
O
|
R |
14 |
|
|
|
|
|
|
|
|
8 R |
O |
|
|
|
|
|
|
|
O |
|
|
|
|
|
(31) |
|
|
(32) |
R = H |
−0.28 (317), +0.36 (283) |
−0.90 (302) |
||
|
|
|||
R = CH3 |
−0.12 (319), +1.50 (289) |
|
|
|
R = OH |
−0.22 (319), +1.04 (288) |
|
|
|
R = OAc |
−0.11 (320), +0.96 (280) |
|
OH |
|
R = CH2 OH |
−0.10 (323), +1.13 (292) |
|
||
|
|
|||
R = CH2 OAc |
−0.10 (323), +1.22 (289) |
A |
B |
|
|
|
|
O
(33)
−0.31 (315), +0.36 (283)
O |
O |
(34) |
(35) |
−0.34 (305), +0.12 (272) |
−0.12 (320), +1.59 (290) |
and twist forms with variable ratios. This equilibrium was affected by minor changes at remote positions and by the polarity of the solvent. An increase of the steric bulkiness of the 8ˇ-substituent increased the A-ring twist population. Introduction of an 8˛-substituent in 33 decreased the flexibility of the B-ring, thus increasing the A-ring chair population120.
X-ray crystallographic analysis revealed that methyl cis-tetrahydro-˛- (36) and -ˇ- santoninate (37) have a nonsteroid decalone conformation in the solid state. Furthermore, positive Cotton effects shown by both cis-fused decalone analogues indicated the presence of such nonsteroid conformation (38) in solution, in accord with the octant rule121.

186 |
|
|
Stefan E. Boiadjiev and David A. Lightner |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
R1 |
|
|
|
|
|
|
|
|
|
|
R2 |
|
O |
|
|
H |
|
R1 |
|
OH |
|
|
|
|
|
|
|
R2 |
|
|
|
|
|
|
|
|
|
OH |
|
|
O |
|
|
|
(36) R1 = CH3 , R2 = CO2 CH3 |
+0.67 (284), +0.78 (213) |
(38) |
|
|||||||
(37) R1 = CO2 CH3 , R2 = CH3 |
+0.58 (284)12 1 |
|
|
|||||||
|
|
|
||||||||
|
|
|
|
|
|
R1 |
|
|
|
|
|
|
|
|
O |
|
|
|
R2 |
|
|
|
|
|
|
|
|
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
R1 = H, R2 = α-CH3 |
+0.83 (285), |
+1.03 (215) |
|
|
||||
|
|
R1 = H, R2 = β-CH3 |
+0.91 (285), |
−0.72 (215) |
|
|
||||
|
|
R1 = OH, R2 = α-CH3 |
+0.64 (282), |
+1.33 (215) |
|
|
||||
|
|
R1 = OH, R2 = β-CH3 |
+0.66 (283), |
−0.59 (220)12 2 |
|
|
||||
|
|
|
|
O |
|
|
|
|
|
|
|
|
H |
|
|
|
|
|
O |
H |
O |
|
|
|
|
|
|
|
|
|
||
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
|
|
O |
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R3 |
AcO |
O |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
R1 |
|
|
|
|
|
|
O |
|
|
|
O |
|
|
O |
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH2 OR2 |
|
|
|
|
|
|
||
|
|
(39) |
|
|
|
|
(40) |
|
|
|
1 |
R |
2 |
3 |
|
|
−3.14 (299), +4.26 (242)12 6 |
|
|||
|
R |
|
R |
|
|
|
|
|
|
|
|
H |
H |
|
H |
|
−0.89 (299)12 3 |
|
|
|
|
|
H |
Ac |
H |
|
−0.51 (300), −0.40 (225)12 3 ,12 4 |
|
|
|||
|
OH |
H |
|
H |
|
−0.87 (302)12 5 |
|
|
|
|
|
OH |
Ac |
H |
|
−0.52 (301)12 5 |
|
|
|
||
|
10β-OH OAc |
Ac |
OH |
|
−0.71 (298), −0.62 (225)12 6 |
|
|

5. Chiroptical properties of compounds containing CDO groups |
187 |
O H
O
AcO |
O |
|
O
O
(41)
+1.74 (296), −0.65 (252)12 6
O H
O
AcO |
O |
|
O O
(43)
+2.29 (288), −3.77 (232)12 6
O |
O |
H |
O |
|
|
|
O |
AcO |
|
O |
|
|
|
|
|
|
O |
O |
|
|
|
|
|
|
(42) |
|
|
|
−2.20 (289), +2.30 (225)12 6 |
||
O |
O |
H |
O |
|
|
|
|
|
|
|
O |
AcO |
H |
|
|
|
O |
|
|
|
|
|
|
|
O |
O |
|
|
|
|
|
|
O |
|
|
|
|
(44) |
|
|
+0.18 (320), |
+0.22 (308), |
|
|
+0.10 (300), |
−0.26 (276)12 6 |
New diterpenoids belonging to neo-clerodane type (39), some having an unusual neo- clerodane rearranged skeleton with eight-membered ketone ring (40 44), were recently described126.
O
|
|
O |
O |
|
|
|
|
|
|
H |
|
|
|
|
O |
|
|
|
|
H |
O |
|
|
O |
H |
|
O |
||
|
|
|||
O |
|
|
|
|
O |
|
|
O |
|
O |
|
O |
|
|
O |
OH |
|
OAc |
|
|
CH2 OAc |
|
CH2 OAc |
|
+0.93 (303)12 7 |
−2.00 (295)12 7 |
|
+1.98 (298)12 8 |
|

188 |
Stefan E. Boiadjiev and David A. Lightner |
|
|||
|
|
H |
O |
|
|
|
|
|
|
|
|
|
|
O |
|
H |
O |
|
H |
|
O |
||
AcO |
|
O |
|
||
|
|
|
|||
|
|
O |
|
AcO |
OAc |
|
|
|
|
|
|
O |
OH |
R |
|
H |
|
|
|
|
|
OAc |
|
R = H sh−0.20 (312), |
−0.51 (293), |
−0.06(250) |
+1.95 (290)13 0 |
|
|
R = OH sh−0.23 (315), |
−0.57 (295), |
−0.08 (252)12 9 |
|
||
O |
|
|
|
|
|
|
|
|
|
O |
|
|
O |
O |
|
R1 |
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
R4 |
|
OH
+0.58 (310), −0.10 (269)13 1
O
O
H
−0.15 (305)13 2
|
|
|
H |
|
R3 |
|
|
|
|
|
|
|
|
|
|
R2 |
|
|
R1 |
R2 |
R3 |
R4 |
|
(45) OH |
OH |
OAc |
OH |
−0.73(314)132 |
|
|
|
|
|
|
−0.75(312)133 |
|
H |
OH |
OAc |
OH |
−0.97(300)132 |
|
H |
OH |
OAc |
H |
−1.94(303)132 |
|
|
|
|
|
−2.71(312)133 |
|
H |
OAc |
OH |
OH |
−1.67(305)132 |
|
H |
OAc |
H |
OH |
−0.18(305)132 |
|
H |
H |
H |
OH |
−0.27(305)132 |
The absolute stereochemistry of forskolin (45) and of the C 6 and C 7 dibenzoyl derivative (46) was unequivocally assigned by applying the exciton chirality method, thus placing R3 (OAc in 45) substituent at ˇ-position134.
CD data for n ! Ł Cotton effect of D:A-friedo-oleanones (47 51) have been interpreted on the basis of the octant rule, with the prediction that the D and E rings adopt a boat-boat conformation for 48 and 50138.
Intermediate-intensity positive n ! Ł Cotton effects (all in dioxane) of the 3- oxotriterpenoids 54, 57 59 were attributed to an A-ring chair-boat conformational equilibrium. The contribution of the boat form (like in 2ˇ-methyl model derivatives 53 and 56) was estimated to be ca 30%140.

5. Chiroptical properties of compounds containing CDO groups
O
O |
|
|
|
|
|
|
O |
|
|
|
OH |
|
|
H |
|
|
H |
H |
|
|
|
|
||
|
|
|
R1 |
|
H |
|
OBz |
R2 |
|
|
|
|
||
|
|
|
|
|
|
OBz |
|
O |
|
|
|
|
|
(46)
+15.18 (239), −2.42 (221)134
OH
H
O
RO |
OH |
O O
OR
R = H +1.44 (287)
R = Ac +0.30 (280)136
HO
O
H
H H
O
R3 |
|
|
|
R1 |
R2 |
R3 |
|
H |
H |
H |
−2.68(290)135 |
H |
OAc |
H |
−1.47(300)135 |
OAc |
H |
H |
−2.36(298)135 |
H |
H |
OAc |
−3.17(300)135 |
|
|
|
OH |
R |
|
|
OH |
OH
R = H +1.60 (287)
R = OH +1.03 (290)136
−2.18 (285)137
189
OH

190 |
Stefan E. Boiadjiev and David A. Lightner |
R5
R6
R1
|
|
R2 |
|
|
R4 |
|
|
|
|
|
|
|
|
R3 |
|
|
|
|
R1 |
R2 |
R3 |
R4 |
R5 |
R6 |
∆ε(CHCl3 ) |
λmax |
(47) |
O |
H2 |
H2 |
H2 |
H2 |
H2 |
−1.17 |
293 |
(48) |
H2 |
O |
H2 |
H2 |
H2 |
H2 |
−3.46 |
294 |
(49) |
H2 |
H2 |
O |
H2 |
H2 |
H2 |
+2.49 |
293 |
(50) |
H2 |
H2 |
H2 |
H2 |
O |
H2 |
+8.98 |
295 |
(51) |
H2 |
H2 |
H2 |
H2 |
H2 |
O |
+2.38 |
294 |
O
HO
OH
OH
HO
−5.36 (284), −14.51 (213)139
|
|
H |
O |
|
|
|
H |
|
|
|
|
|
|
||
R2 |
|
R |
2 |
|
|
CN |
|
|
|
|
|
|
|||
R1 |
|
|
R1 |
|
|
|
|
O |
|
|
O |
|
|
|
|
(52) |
R1 = CH3 , R2 = H |
−0.60(293) |
(55) |
R1 |
= CH3 , R2 = H |
−0.71(292) |
|
(53) |
R1 = H, R2 = CH3 |
+3.65(294) |
(56) |
R1 |
= H, R2 = CH3 |
+3.85(291) |
|
(54) |
R1 = R2 = H |
+0.76(293) |
(57) |
R1 |
= R2 = H |
+0.55(292) |

5. Chiroptical properties of compounds containing CDO groups
O
H H
O |
|
O |
|
(58) |
+0.63 (293) |
(59) |
+0.73 (293) |
|
HO |
|
|
|
R2 |
|
OH |
O
R1 |
|
|
|
O |
|
|
R1 |
= O, R2 = |
OH |
+0.35 |
(293)141 |
+0.37 (292)141 |
|
H |
||||||
|
|
|
|
|
||
R1 |
= H,H, R2 = O |
−0.60 |
(287)141 |
|
||
|
|
|
R |
|
OR |
|
|
|
|
R |
|
OR |
|
|
|
|
HO |
|
|
|
|
|
|
|
Br |
|
|
|
|
|
|
|
H |
|
|
|
|
O |
|
|
O |
|
||
R = bond |
−2.70 (292) |
R = H |
|
−2.11 |
(292) |
||
R = HO − |
−1.43 (300) |
|
|
|
|
||
|
|
O− |
−2.88 (292)142 |
R = Me2 C |
|
−1.95 |
(291)142 |
R = Me2 C |
|
|
|
|
O−
191
Br

192 |
Stefan E. Boiadjiev and David A. Lightner |
OH
OH
|
O |
|
|
HO |
|
H |
|
H |
|
|
|
|
O |
O |
|
|
−2.04 (293)142 |
−1.79 (292)142 |
|
|
OH |
|
R |
|
|
|
|
|
OH |
|
R |
|
|
|
|
O |
O |
|
|
|
H |
|
|
H |
|
|
|
|
O |
|
|
O |
−2.64 (292)142 |
R = bond |
−2.95 (291) |
|
|||
|
|
R = HO− |
−3.51 (294)142 |
H |
|
H |
|
||
R1 |
|
R1 |
|
||
|
|
|
|
|
|
|
|
|
|
||
H |
|
|
H |
R2 |
|
R2 |
|
|
|||
R1 = CH2 , R2 = O |
|
R1 = CH2 , R2 = O |
|
||
+0.75 (317), |
+1.22 (307), |
+0.67 (319), |
+1.23 (309), |
||
+1.22 (298), |
−6.10 (212)143 |
+1.11 (294), |
+11.0 (198)143 |
||
R1 = O, R2 = α-OAc,β-H |
R1 = O, R2 = α-OAc,β-H |
||||
|
|
sh +0.07(315), sh +0.17 (302), |
+2.72 (292), |
+0.80 (205)143 |
|
+0.28 (287), |
−1.30 (199)143 |
R1 = O, R2 = α-H,β-OAc |
|||
R1 = O, R2 = α-H,β-OAc |
|||||
+0.06 (319), |
+0.01 (306), |
+2.23 (288)143 |
|||
+0.13 (278), |
−1.60 (201)143 |
|
|

5. Chiroptical properties of compounds containing CDO groups |
193 |
HO
HO O
H
HO
H
HO
H
OH
−2.48 (295)144
R2 |
R2 |
O |
O |
H |
|
|
|
H |
|
|
|
||
R1 |
|
R1 |
|
|
|
R2 = CH(CH3 )CH2 CH2 CO2 CH3 |
|
|
|
||
R1 = H |
−0.82 (292) |
R1 = CH3 |
+1.27 (289) |
||
R1 = CH3 |
−0.39 (285) |
R1 = (CH3 )2 |
−0.27 (309)145 |
||
R1 = (CH3 )2 |
−0.94 (299)145 |
|
|
O |
|
|
|
|
|
||
|
|
|
|
O |
|
|
C8 H17 |
|
|
|
|
BnO |
|
|
|
|
|
|
|
|
|
H |
|
|
|
|
|
OH |
|
O |
O |
H |
|
|
|
|
|
|
|||
+1.01 (296)146 |
|
|
|||
sh −1.3 (305), |
−1.55 (293), |
||||
|
|
||||
|
|
−1.06 (247), |
+4.7 (212)147 |

194
RO
Stefan E. Boiadjiev and David A. Lightner
|
O |
|
|
|
|
O |
|
|
|
|
|
14β-H, R = H |
|
|
|
|
−2.97 (313), |
−3.10 (304), |
|
|
|
−0.39 (248), |
+2.2 (220) |
|
|
|
R = Ac |
|
|
H |
|
−4.11 (308), |
+2.3 (223) |
|
|
14α-H R = H sh +1.12(315), |
|
||
|
|
|
||
H |
O |
+2.48(292), |
+4.2 (211) |
|
|
R = Ac |
|
|
|
|
|
|
|
|
|
|
sh +1.16 (316), |
|
|
H |
|
+2.80 (296), |
+3.7 (211)147 |
|
|
O |
|
|
|
|
|
|
|
O |
|
O |
|
|
|
|
|
|
H |
|
|
|
|
O |
O |
|
|
|
H |
|
O H |
O |
|||
H |
||||
|
|
O |
||
OH |
|
|
||
|
|
|
||
RO |
|
|
O |
|
OH |
|
|
||
|
|
O |
||
R = H −1.61 (294), sh −0.98 (257), |
+2.76 (294)148 |
|||
+5.9 (212) |
|
|
|
|
R = Ac −1.67 (293), sh −1.16 (257), |
|
|
|
+4.9 (212)147
O
O
HO
OAc
AcO
N
H
−3.91 (309), −1.29 (252)149 |
+4.57 (310)150 |