Скачиваний:
30
Добавлен:
15.08.2013
Размер:
865.77 Кб
Скачать

5. Chiroptical properties of compounds containing CDO groups

215

O

H

H H

+0.30 (402), 17.90 (317)2 4 8

O

R1

H

R2

H

R3

H

 

 

O

 

R1

 

 

AcO

 

 

R2

 

R1 = R3 = H, R2 = CH3

18α-H

 

 

18β-H

R1

= H, R2 = CH3 , R3 = OAc

18α-H

 

 

18β-H

R1

= R3 = H, R2 = CH2 OAc

18α-H

 

 

18β-H

R1

= OAc, R2 = CH2 OAc, R3 = H

18α-H

 

 

18β-H

O

H

H

2.70 (382), +16.79 (315)2 4 8

R1 R2 R3

H OH O = −2.78(369), 8.74(289), +2.28(263)

OH OH OH 5.36(345), +4.41(277), 4.17(228)

OH H OH 5.17(347), +4.84(278), 3.25(230)

H O = OH 3.27(368), +3.97(271)2 4 9

H

COOCH3

R3

∆ε λ(n → π )

∆ε

λ(π → π )

0.15

353

+3.45

242

+0.17

362

1.15

246

1.27

339

+1.50

255

+0.56

336

1.47

253

1.84

337

+2.80

247

+0.18

362

2.90

248

1.45

337

+3.23

245

+0.20

361

2.05

2462 50

O

 

H

 

O

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

OAc

 

 

 

AcO

 

 

 

 

 

18α-H +0.05 (393), 0.98 (342), +0.95 (265), 3.90 (237)

1.3

(346), 2.9 (331),

18β-H

0.08 (347)

3.48 (246)

2 50

3.1

(319), 10.2 (235)2 51

 

 

 

216

Stefan E. Boiadjiev and David A. Lightner

 

 

 

OH

 

H

 

 

H

H

O

O

O

O

O

 

O

 

O

O

 

 

 

 

 

 

 

O

 

0.68 (317), +9.70 (238)2 52

1.41 (320), +8.22 (238)2 52

0.67 (306), +7.03 (240)2 52

 

OAc

 

 

OAc

H

 

 

H

 

O

OCOC4 H7

O

OR

 

 

 

H

 

O

OAc

 

O

OAc

 

O

 

 

O

+1.38 (330), 9.87 (234)2 52

 

R = COC(CH3 ) CHCH3 + 2.54 (299), 3.64 (213)2 53

 

 

 

R = H

+1.48 (301), 1.03 (212)2 53

 

 

 

R = COPh

+2.40 (300), 2.68 (227)2 53

 

OH

 

 

O

 

O

 

RO

 

 

 

O

 

OAc

 

H

 

H

 

 

O

 

O

 

+1.42 (430), 6.15 (342),

R = H +2.58 (450), 2.21 (380),

6.39 (329), +2.13 (270)2 54

4.79 (333), 4.42 (318)

 

 

 

R = Ac 1.15 (450), 0.62 (330),

 

 

 

+13.62 (273), 3.08 (242)2 54

 

OH

CH2 OH

 

 

HO

 

R2

 

 

 

R1

 

 

R1 = H, R2 = CH3

O

0.30 (390), 2.77 (304),

H

+5.84 (283), 1.68 (232)

R1 = CH3 , R2 = H

O

1.80 (390), 4.51 (305),

OH

+6.41 (284), +6.51 (270)2 55

 

 

 

5. Chiroptical properties of compounds containing CDO groups

217

 

 

 

OH

CH2 OH

 

OH

CH2 OH

 

 

 

HO

R2

HO

 

R2

 

 

 

R1

 

R1

 

 

 

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

H

 

 

H

 

 

 

O

 

H

O

 

 

 

 

H

 

 

 

 

 

 

O

 

O

 

 

 

 

 

R1 = H, R2 = CH3

R1 = H, R2 = CH3

 

+3.76 (443), 1.22 (398), +1.31 (350),

+1.09 (460), 3.11 (420),

+3.43 (301), +4.49 (280)

 

+4.20 (347), +2.10 (279)

 

 

 

R1 = CH3 , R2 = H

R1 = CH3 , R2 = H

 

+2.94 (446), 0.82 (398), +0.65 (360),

+0.42 (460), 2.35 (420),

1.71 (328), +3.84 (298), +3.02 (281)2 55

+2.02 (352), +1.01 (298)2 55

 

 

 

OAc

 

 

OH

 

 

 

O

 

O

 

 

 

 

 

 

O

 

 

O

 

 

 

OH

 

 

OCHO

 

 

 

H

 

H

 

 

 

 

 

OH

 

OHCOCH2

OH

 

+0.43 (380), 0.55 (325), +8.79 (259),

1.08 (340), +20.0 (242)2 56

0.42 (242), +1.29 (234)2 56

 

 

 

 

 

 

 

OH

 

H

O

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

OAc

 

 

 

 

 

 

 

H

 

H

 

 

 

 

 

OH

 

COOCH2

O

 

 

 

 

 

0.20 (420), +7.20 (252),

+2.11 (445), 2.21 (370), 7.34 (336),

+7.20 (232)2 56

6.73 (320), 3.12 (257)2 57

 

218

Stefan E. Boiadjiev and David A. Lightner

 

 

OMe

AcOCH2

OH

 

HO

 

 

H

O

O

 

 

H

HOCH2

 

 

AcOCH2

+0.82 (320), 1.44 (272)2 57

0.46 (324), +1.54 (292)2 57

 

 

 

CO2 CH3

 

 

 

O

 

 

 

HO

 

 

 

 

0.5 (434), +1.0 (375), 1.1 (261)2 58

 

R

 

O

 

R

 

 

 

 

 

 

 

OH

O

HO

 

 

R

R = H

0.6 (434), +1.0 (373),

R = CH3 +0.62 (326)

R = bond

1.0 (263), +0.2 (240)

R = Ph +1.24 (345), 9.88 (280)2 59

2.1 (434), +1.8 (368),

 

2.2 (263), +1.9 (241)2 58

 

H

 

O

O

 

R

 

R = CH3 +0.23 (325)

0.38 (325), +3.42 (243)2 6 0 ,2 6 1

R = Ph +0.55 (335), 2.45 (275)2 59

 

5. Chiroptical properties of compounds containing CDO groups

219

R

R

Ph

R = H

R = Cl

R = Ph

R = 4-CH3 C6 H4

R = 4-CH3 OC6 H4

R = 4-FC6 H4

R = 4-ClC6 H4

R = 4-BrC6 H4

R = 4-pyridyl

O

+0.83 (344) +0.41 (338) 1.46 (364) 1.80 (364) 2.60 (362) 1.53 (365) 1.78 (366) 2.08 (355)

0.87 (372)2 6 2

Cl

R = H

R = Ph

R = 2-ClC6 H4

R = 2-BrC6 H4

R = 4-ClC6 H4

R = 4-BrC6 H4

R = 2-CH3 C6 H4 R = 2-CH3 OC6 H4 R = 4-CH3 C6 H4

O

O

+0.22 (334)2 6 3

0.57 (334)2 6 5

+1.57 (340)2 6 5 +1.50 (342)2 6 3 +1.00 (344)2 6 3 +1.68 (343)2 6 3 +1.69 (345)2 6 3 25 (275)2 6 4 +0.97 (352)2 6 5 +0.73 (362)2 6 5 +1.76 (349)2 6 5

O

 

OCO

 

X

 

 

 

 

 

 

OCO

O

Cl

 

 

 

 

 

+0.69 (345)2 6 3

X = H

+0.85 (333), +6.10 (270)

 

 

X = 4-Cl

+0.52 (343), +5.30 (266)

 

 

X = 2,6-Cl2

+0.42 (345), +3.90 (258)2 6 6

 

O

 

 

 

 

 

O

 

H

 

 

 

 

 

Cl

 

 

 

H

 

Cl

 

 

+1.60 (348), 41.2 (278)2 6 7

1.50 (389), 11.2 (297)2 6 7

220

 

Stefan E. Boiadjiev and David A. Lightner

 

 

 

O

H

 

 

 

O

H

 

 

 

 

 

 

 

 

 

O

 

 

 

R1

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

R2

 

 

 

H

R

 

 

 

 

 

 

 

 

 

 

R1 = CO2 H, R2 = H

 

 

 

R = CO2 H

 

 

 

0.86 (369),

1.04 (352),

 

 

2.31 (356), 0.08 (271)

 

 

+0.68 (267), +1.85 (232)

 

 

+8.80 (238), 4.02 (215)

 

 

R1 = CH3 , R2 = OH

 

 

 

R = CH2 OH

 

 

 

0.95 (372), 2.14 (338)

 

 

2.98 (360), 0.97 (261)

 

 

-1.07 (257), +1.39 (226)2 6 8

+5.73 (228)2 6 8

 

MeO

 

 

 

MeO

 

 

 

 

 

 

NHCOCH3

 

 

 

 

NHCOCH3

MeO

 

 

 

MeO

 

 

 

 

OMe

 

 

 

 

OMe

 

 

 

 

 

 

O

 

 

 

 

OMe

 

 

 

OMe

 

 

 

 

O

 

 

 

(100)

 

 

 

 

(101)

 

9.26 (351), 8.21 (274), +11.0 (232)

13.1 (345), +2.31 (257), +13.5 (238)

MeO

NHCOCH3

MeO

OMe H

H

O

OCH3

(102)

+13.5 (350), 49.6 (293), 15.9 (212)

The CD spectra of approximately fifty alkaloids of colchicine (100) and isocolchicine (101) types and alkaloids with altered tropolone rings (e.g. 102) have been reported269. Six to seven CD bands of these alkaloids were identified in the 400 190 nm region. The 350 nm Cotton effect appears to result from a ! Ł transition of methoxytropone system. The pH-dependent changes in the CD spectra were studied following ionization of a free phenolic group on ring A, a hydroxy group on the tropolone ring or substituted amino group in colchicine (100) analogues270.

5. Chiroptical properties of compounds containing CDO groups

221

O

O

 

 

AcO

O

 

 

 

 

AcO

O

 

 

 

 

0.36 (333), +0.51 (294),

 

O

 

 

+8.23 (233)176

 

 

 

 

 

 

 

OR

 

 

 

 

 

3

RO

3

 

 

 

 

 

P

 

 

 

 

O

 

 

 

 

 

 

 

 

 

(3S, 3S)-Astaxanthin R = H

3.2 (521), +6.7 (384), 23.1 (323),

 

 

 

+12.5 (280), 14.4 (249), +12.8 (224)2 71,2 72

 

 

R = Ac

+4.5 (387), 19.6 (321), +12.1 (278),

 

 

 

14.7 (248)2 71

 

 

 

R = CH3 (CH2 )14 CO +3.7 (385), 16.4 (320),

 

 

 

 

+11.5 (279), 13.0 (248)2 71

 

 

 

O

 

O

HO

P

P

 

HO

P

 

 

HO

 

 

 

 

O

O

 

O

 

+2.0 (285), +5.0 (225)2 73

2.1 (380), +10.9 (316),

+1.5 (300), 1.0 (270),

 

 

7.0 (278), +6.9 (246)2 72

+3.5 (250), 0.5 (240),

+7.0 (225)2 73

 

OH

 

P

O

 

+2.5

(345), 7.5 (295),

+4.5

(258)2 73

222

Stefan E. Boiadjiev and David A. Lightner

O

O

HO

OH

+6.3 (477), 24.0 (380), +9.0 (305), 8.0 (266)2 71

O

OH

HO

O

5.9 (466), +7.5 (365), 25.5 (282)2 71

 

 

 

 

 

 

 

 

 

R1

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

NH C

R3

O

N

O

N

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 Me

 

 

 

 

 

 

 

(103)

 

 

 

(104)

 

(105)

 

 

 

 

 

 

 

 

 

 

 

 

 

+28.0 (289)2 74

 

16.1 (286)2 74

 

R1

 

 

R2

R3

Reference 274

 

 

 

 

C

 

 

 

CH

Me

H

32.5 (274)

O

N

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

 

 

C

 

CH

H

+27.9 (274)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

CH

n-Pr

H

25.2

(274)

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

CH

Et

Me

+1.4

(276)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

 

CH2

Et

H

16.8

(278)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-Pr

 

 

COOMe

H

+17.7

(274)

 

(106)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+15.0 (292)2 74

Chromophoric derivatives for the optically transparent amino group, such as dimedone derivatives 103 106, were prepared for assigning the absolute configuration of primary and secondary amines. The vinylogous planar amide chromophore (280 290 nm ! Ł

5. Chiroptical properties of compounds containing CDO groups

223

absorption) shows positive Cotton effects for derivatives possessing the (R) configuration in primary and secondary amines274.

Fluorescamine has been used as a Cottonogenic reagent for secondary amines (forming aminoendione chromophore)275 and for primary amines (forming pyrrolinone chromophore, 107)276 whose in situ CD was directly correlated with the amine absolute configuration.

 

R2

 

 

 

R1

C R3

Amine

 

 

 

N

(R)-α-methylbenzylamine

+5.01 (387),

7.29 (275)

 

(R)-α-(1-naphthyl)ethylamine

+4.73 (388),

8.02 (287)

HO

 

 

(R)-α-phenyl-l-propylamine

+5.34 (386),

8.95 (270)

 

Ph

 

(R)-norepinephrine

+1.55 (385),

3.48 (285)

 

O

(R)-2-aminobutane

+0.38 (385),

0.95 (288)

 

 

 

 

CO2 H

(107)

Circularly polarized (laser) light is widely used not only to study the absorption properties of enantiomers, but also to generate optically active compounds via enantioselective photochemical process.

 

 

CO2 Me

 

 

 

OCH3

HO

 

 

 

 

OCH3

 

 

H

 

O

O

O

CH3 O

O

 

 

(+)-(1R,5S)-(108)

(+)-(1R, 4R,5S)-(109)

(+)-(4S)-(110)

 

()-(1S,5R)-(111)

+2.5 (350)

+7.8 (305)

0.32 (320)

 

2.0 (350)

 

(calcd from 3.7% ee)

(calcd from 2% ee)

(calcd from 1.6% ee)

(calcd from 1.6% ee)

 

 

 

 

O

 

O

 

 

R

R

R R

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

Ph

 

H

MeO2 C

 

H

(+)-(R)-(112) + 1.02 (353) R = H

+0.17

(319), +0.32 (308)

R = H +0.13

(318), +0.22 (307)

(44%ee)

(34%ee)

 

 

 

 

 

 

 

 

 

R = CH3

+0.17

(319), +0.34 (305)2 8 0

R = CH3 0.04

(318), +0.02 (312),

(8%ee)

 

 

 

 

 

(27%ee) 0.03

(307), +0.04 (300)2 8 0

224 Stefan E. Boiadjiev and David A. Lightner

Some difficult-to-resolve enones were obtained by enantioselective hydration of 108

and 109277, or laser phototransformation using circularly polarized light on 108, 110,

111278 and 112279.

UV irradiation of a cis bicyclic ˛,ˇ-unsaturated ketone in diethyl (C)-tartrate afforded

trans ketone 113 enriched in the

( )-enantiomer,

with an

estimated

optical purity

of 0.5

 

1%281.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

H

 

 

 

 

 

H

 

 

 

 

 

 

 

R

 

 

R

 

 

 

(113)

 

 

 

 

 

 

 

0.67 (307)2 8 1

R = H

0.030

(350),

R = H

0.030

(357)

 

 

 

 

+0.027

(327)

R = CH3

0.016

(354),

 

 

 

R = CH3

0.052

(347),

 

+0.009

(310)

 

 

 

 

+0.015

(313)

R = Cl

0.043

(353)2 8 2

 

 

 

R = CH3 O 0.102

(343),

 

 

 

 

 

 

 

 

0.041

(317)2 8 2

 

 

 

 

 

 

O

H

 

 

 

 

0.34 (328), 0.12 (287),

 

 

 

 

0.49 (252), +2.24 (219)2 8 3

 

 

Ph

H

Ph

H

Ph

H

 

 

 

 

 

 

H

COPh

H

COPh

H

COPh

N

 

 

O

 

 

 

H

 

 

 

 

 

 

 

4.76 (312), 7.76 (260)2 8 4

4.21 (315), 9.00 (263), 2.86 (322), 6.30 (257),

 

 

+6.97 (232)2 8 4

 

+8.31 (235)2 8 5

 

 

 

MeO

OH

 

OMe

 

OH

 

 

OH

 

 

O

 

O

 

 

 

(114)

 

 

(115)

 

+0.65 (305), 1.39 (278)2 8 5

 

3.30 (310), +1.05 (246),

 

 

 

 

1.15 (230)2 8 6

 

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups