Скачиваний:
30
Добавлен:
15.08.2013
Размер:
865.77 Кб
Скачать

5. Chiroptical properties of compounds containing CDO groups

205

TABLE 7. (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ketone

 

a

cos

Obs. ε

a

cos

 

 

O

75°

C0.26

C4.71

76°

C0.24

 

 

70°

C0.34

C5.69

74°

C0.28

CH2

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

60°

C0.50

C12.0

55°

C0.57

 

O

55°

C0.57

C18.8

48°

C0.67

 

 

aSee Figure 14.

FIGURE 14. Chirality rule reference frame for CDO (X, Y, Z) and CDC (X0 , Y0 , Z0 ) chromophores of ˇ, -unsaturated ketones. The C˛ atom connecting the chromophores lies in the XZ plane; the Y0 axis is perpendicular to the plane of the CDC group. denotes the angle between Z and Z0 axes. The chirality rule is given by: cos D sign XY Ð cos , where X and Y are the Cartesian coordinates of Cˇ andis the angle between the CDO axis and Er (the electric dipole moment associated with the transition). Applications are shown in Table 7

206

Stefan E. Boiadjiev and David A. Lightner

transition, x and y are the Cartesian coordinates of Cˇ , and is the angle of intersection of axes drawn along and through the CDO and CDC bonds (Figure 14). The correlation for the limited number of examples of Table 7 is quite good, but only one example has been reported with a negative value of cos . Additional experimental support of the chirality rule has been published recently203, and a detailed theoretical treatment of 2- norbornenone supported the concept but not all of the assumptions, while clearly showing the importance of extrachromophoric perturbers204. Recently, a theoretical analysis was presented for ˇ, -unsaturated ketones based on coupling between ! Ł and n ! Ł transitions205.

V. COMPILATION OF UNSATURATED KETONE AND ALDEHYDE CD

Walborsky and coworkers206 have reported the CD of series conjugated cyclohexylidene aldehydes and ketones. These compounds served as additional examples supporting the planar diene rule for CD ! Ł transition208.

 

 

 

H

O

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

O

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

R = CH3

0.61 (347), +2.08 (230)

+0.44 (348),

2.70 (236)2 0 6

 

R = C(CH3 )3

0.72 (347), +2.65 (231)2 0 6

 

 

 

 

H

 

O

 

 

H

O

 

 

 

 

 

H

 

 

 

 

 

H

 

O

 

H

 

 

 

 

 

 

 

 

 

 

 

H

 

 

0.70 (347), +0.82 (230)

2 0 6

+0.62 (348),

4.55 (232)2 0 6

0.87 (348), +4.93 (323)2 0 6

 

 

 

 

 

 

H

 

O

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

0.65 (346),

+3.58 (231)2 0 6

+0.58 (347), 3.36 (232)2 0 6

H

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

O

 

 

 

 

H

O

 

+1.74 (347),

5.76 (236)2 0 7

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

0.80 (347),

+3.48 (233)2 0 6

+0.47 (347), 2.16 (233)2 0 6

 

5. Chiroptical properties of compounds containing CDO groups

207

 

H

 

H

 

 

O

 

O

 

RO

 

RO

 

 

 

H

 

CH3

 

R = H

+0.29 (346), 1.00 (230)

R = H

0.05 (337), +2.30 (238)

 

R = TBDMS

+0.57 (347), 3.30 (235)2 0 9

R = TBDMS

0.07 (345), +0.90 (240)2 0 9

 

H

 

H

 

 

O

 

O

 

R

 

 

H

 

R = OH

+0.78 (345),

4.2

(231)

R = CH3

+0.13 (345),

1.9 (235)2 0 9

 

 

H

 

 

 

 

O

R

 

 

 

 

 

H

 

R = OH

1.09 (357), +16.39

(242)

R = CH3

0.94 (358), +12.45

(244)2 10

R

CH3

R = OH 0.12 (337), +4.30 (239)

R = CH3 0.03 (332), −0.80 (240)2 0 9

H H

R

H

R = CHO 0.22 (350), +0.30 (277) R = COCH3 0.04 (347), +1.20 (287) R = COtBu 0.03 (350), +1.60 (287)2 11

 

H

R

 

 

H

 

 

 

 

 

 

O

 

 

 

H

 

 

 

 

 

 

H

 

 

R

 

R = CHO

0.40 (289)

R = CH3

0.05(363), +2.9 (235)

 

R = COCH3

1.40 (290)2 11

R = C(CH3 )3

0.03

(367), +2.7(237)2 11

 

O

 

 

 

 

O

 

 

 

H

 

 

 

 

 

 

O

 

 

 

H

 

 

H

OH

 

OH

 

OH

 

AcO

 

AcO

 

O

 

 

+0.06 (325), 5.4 (250),

+0.3 (330),

4.1 (253),

+2.3

(296), 6.6 (253),

+6.6 (225) 2 12

 

+7.1 (227)2 12 ,2 13

+7.8

(229)2 12

 

208

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

O

H

 

H

 

 

 

 

 

 

 

 

 

O

O

 

H

 

 

 

 

 

 

 

 

OH

 

OH

 

OH

 

 

 

 

 

 

 

AcO

 

AcO

 

O

 

 

 

 

 

 

 

 

0.3 (330),

1.5 (251),

0.3 (321), +0.2 (297),

+2.2 (296), 3.0 (253),

 

+2.9 (235)2 12

+5.0 (230)2 12

 

+1.2 (231)2 12

 

 

 

 

 

 

 

 

Ph

H

Ph

H

 

Ph

H

 

 

 

 

 

 

 

O

S

O

S

 

 

 

 

 

 

MeS

O

S

S

S

S

 

 

 

 

 

 

 

 

 

 

O

 

 

1.73 (329), +2.55 (285),

+0.26 (502),

0.76 (400),

+0.96 (464),

0.71 (390),

 

+5.00 (211)2 14

 

+2.83 (317),

+5.48 (272),

1.04 (360),

1.40 (275),

 

 

 

3.75 (235)2 15

+1.48 (247)2 15

 

 

OH

 

OAc

 

 

 

H

 

 

 

 

 

CHO O

CHO

+0.47 (367), +1.42 (338), 0.8 (322), +7.4(236)2 17 10.17 (285), +5.45 (239)2 16

 

O

 

O

 

 

 

 

CO2 H

 

 

CO2 R

RO

 

 

 

OH

 

 

 

 

 

 

R = H

+2.44

(318),

R = H

2.35 (320),

 

16.46 (224)

 

+18.54 (221)

R = PhCO +1.89

(320),

R = Me

1.41

(312),

 

28.86 (230)2 18

 

+9.30

(222)2 18

5. Chiroptical properties of compounds containing CDO groups

209

The absolute configuration of a new sex pheromone (hepialone, 91) was determined219 on the basis of a rule for (nearly) planar ˛,ˇ-enones198. The (R) configuration of 91 is supported also by the negative n ! Ł CD Cotton effect of the saturated ketone 92 (obtained by ˇ-methylation of 91) where the equatorial ˇ0-ethyl group has larger contribution than equatorial ˇ-methyl group and ˇ-axial methyl group has small or dissignate contribution.

O

O H

(91)

+0.89 (312), +2.15 (261)2 19

O

Cl

 

 

 

CH2 H

+

 

 

CO2

H3 N

CONH

 

0.45

(312),

 

 

+7.03

(245)2 2 1,2 2 2

 

OH

 

O

 

 

OCH3

+3.09 (371), 3.70 (329), +1.58 (247), 1.06 (226)2 2 4

 

O

 

 

 

 

O

 

 

 

 

 

CH3 O

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

(92)

 

 

 

 

 

 

() (300)2 19

 

+2.88 (330),

+1.52 (300),

 

 

 

+7.52 (270),

2.88 (220)2 2 0

 

O

 

 

 

 

O

 

 

 

 

 

O

 

 

O

 

O

 

 

 

 

O

 

+0.49 (359),

+1.03 (344),

0.42 (360),

0.87 (344),

0.23 (285),

+0.69 (260)2 2 3

13.0 (287),

+9.1 (260)2 2 3

 

 

 

R2

 

R1

 

 

 

 

 

 

 

 

 

Ve

 

O

 

O

 

 

 

 

R2

 

 

 

 

R1

R2

 

 

Ve = veratryl

 

 

OMe

H

 

+1.68 (301), 3.47 (267),

 

 

 

 

4.21

(258)

 

 

HH +2.23 (301), 3.53 (267), 4.18 (258)

OMe bond +2.71 (301)2 2 5

210

 

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

H

 

 

 

 

 

O

H

 

 

 

 

H

O

N

 

 

OMe

 

 

 

 

 

 

 

 

 

 

N

 

Pi

O

O

O

 

H

 

 

 

 

 

O

 

 

 

Pi = piperonyl

+0.69 (308), 0.46 (257),

4.5 (337),

+1.1 (298)

+4.12 (334),

+18.03 (298),

0.58 (238)2 2 6

Perchlorate

 

3.61 (277),

6.18 (258)2 2 5

 

4.6 (327),

+2.5 (294)2 2 7

O

 

H

O

 

 

 

N

N

 

 

 

 

 

 

 

N

N

 

 

 

 

 

 

H

 

6.3 (335), +1.0 (290) Perchlorate

7.8 (328), +1.4 (290)2 2 7

O

(CH2 )n

N

HO H

OH

n = 1 +3.33 (335) n = 2 +3.19 (336)

n = 3 +2.71 (337)2 2 8

R

N

2.6 (261)2 2 7

R

R =

0.49 (325)2 2 9

 

O

 

OH

R =

0.32 (326)2 2 9

 

O

 

R

 

N

 

OAc

HO

 

 

HO

 

 

 

 

O

 

 

 

 

 

R = H,H

1.74 (292),

+3.55

(236)

R = H,H

+1.96 (239),

0.56 (212)

R = O

0.11 (385),

sh 1.83 (291),

R = O

0.21 (408),

−0.61 (280),

 

2.32 (285),

1.97

(220)2 3 0

 

sh +3.09 (215), +4.01 (200)2 3 0

5. Chiroptical properties of compounds containing CDO groups

211

A series of steroidal and related cisoid ˛,ˇ-enones was synthesized, and their CD was investigated231,232, adding new examples of enones containing -transoid or -cisoid allylic substituents. The relation between structure and observed Cotton effects was discussed in terms of previously published rules.

O

 

 

 

 

 

(93)

O

 

(94)

0.10 (352),

+0.23 (301),

0.55 (321), 4.01 (234)

3.25 (235),

+5.30 (204)

 

 

 

C8 H17

 

 

 

 

 

 

 

 

 

 

AcO

 

 

 

 

 

 

 

AcO

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

O

(95)

 

 

 

(96)

+0.73 (323), 2.23 (226)

1.67 (320),

6.19 (232),

 

 

 

 

+11.0 (198)

 

 

 

 

 

 

C8 H17

 

 

 

C8 H17

AcO

 

 

 

 

AcO

 

 

 

 

 

 

 

AcO

AcO

 

 

 

O

O

 

 

 

 

 

(97)

 

 

 

 

(98)

2.07 (325), +11.30 (225),

1.05 (332), 3.24 (248),

+11.1 (200)

 

 

 

+1.50

(218), +11.30 (193)

All cisoid ˛,ˇ-enones studied, including compounds 93 98, obey the helicity rule for n ! Ł transition Cotton effects49,233,234. The sign of the 222 272 nm ! Ł band is also in accord with the helicity rule for unsubstituted enones, while the polar C O

212

Stefan E. Boiadjiev and David A. Lightner

allylic bond strongly influences the ! Ł band235. However, compounds 93 and 94 have opposite signs to those predicted by the helicity rules. Substituents at the -cisoid position (as in 98) also show a remarkable contribution to the first ! Ł transition. The shorter-wavelength ! Ł transition (200 220 nm) exhibited a sign opposite to that of the n ! Ł transition231.

 

 

 

 

O

 

 

 

 

R2

 

OH

 

H

 

 

 

O

O

H O

O

OH

O

O

 

 

 

H

 

O

 

O

 

O

 

 

 

 

R1

 

 

 

 

 

 

OH

O

OH

O

 

OH O

 

 

 

 

 

 

 

 

 

 

R1 = OH, R2 = OH

 

1.76 (345), 0.23 (290)

 

1.90 (337), +4.00 (253)2 3 6

 

1.96 (337), 1.70 (216)

 

1.95 (239)2 3 6

 

 

 

 

R1 = OH, R2 = H 2.04 (338), +0.30 (240), 1.53 (215)

R1 = H, R2 = OH 2.39 (338), +0.29 (241), 1.56 (209)2 3 6

Beecham and Collins237 analyzed the CD of 22 steroidal 4-en-3-ones. Based on similarities of Cotton effect amplitudes, ratios of heights of 0-0/0-2 lines and X-ray structural data, they concluded that the chromophore conformation is identical within the series possessing 17˛-, 17ˇ- and 6˛-substituents. A low-intensity, spin-forbidden singlet triplet n ! Ł transition might be the origin of a weak positive Cotton effect at 384 nm ( ε C0.001 to C0.020) observed in addition to the main vibronically-structured negative Cotton effect ( ε 1.20 to 1.50) for 0-2 line at 339 nm. In three of the 6ˇ-substituted compounds, this pattern was modified by a positive CD with the same vibrational progression, thus giving an overall bisignate shape: e.g. ε339 C0.51, ε297 0.13 for 6ˇ-methylcholest-4-en-3-one237.

S

S

 

S

 

 

 

 

 

S

S

 

S

 

O

 

O

 

 

HO

O

 

 

 

O

 

 

Cl

 

O

O

 

 

 

 

 

 

R1

 

 

 

 

R1 = H +0.20 (375), 4.83 (317),

1.73 (347), +2.13 (317),

+1.03 (349), 3.95 (316),

 

3.64 (307), +2.74 (282)2 3 8 ,2 3 9

+2.13 (308), +11.0 (219)2 3 8 ,2 3 9

3.54 (306), +7.12 (257)2 4 0

 

R1 = CH3 +0.22 (376), 4.45 (318),

 

 

 

 

3.33 (307), +2.46 (282)2 3 8

 

 

 

 

5. Chiroptical properties of compounds containing CDO groups

213

O

OH

O

 

 

O

 

 

R1

SO2 Ph

 

 

H SO2 Me

 

 

R2

 

 

CO2 Me

 

R1 = CO2 Me, R2 = H

 

+0.52 (360),

17β−

 

+0.15 (378), 0.45 (326), 3.81 (240), +18.2 (219)

 

+2.86 (294), +12.5 (220)

 

 

 

17α−

 

R1 = H, R2 = CO2 Me

 

 

 

 

+0.53 (359),

1.99 (292), +4.5 (223)2 4 1

+0.59 (360), 0.74 (265), 2.08 (238), +13.4 (220)2 4 1

 

 

 

 

 

O

OR

O

OH

O

OAc

 

O

O

S

CO2 H

O

 

R= H

1.27 (324), +4.4 (286),

0.49 (324), +3.7 (286),

 

+6.0 (342)2 4 2

R= Ac

+8.8 (232)

+2.3 (234)2 4 2

 

 

1.16 (324), +4.1 (286),

 

 

 

 

+11.1 (233)2 4 2

 

 

 

 

 

R2

 

R2

O CH2 OR

 

 

 

OH

 

 

 

 

 

O

 

 

 

 

H

 

 

 

 

 

O

 

O

H

 

O

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

R2 = CH(CH3 )CH2 CH2 CO2 CH3

 

 

R1

= H

+18.5 (231)

+8.7 (224)14 5

R= H

4.71 (343), +11.41 (278),

R1

= CH3

+17.4 (236)

 

R= Ac

11.11 (226)

R1

= (CH3 )2

+13.1 (232)14 5

 

5.21 (343), +12.22 (277),

 

 

11.71 (225)2 4 3

 

 

 

 

 

Caution in using a solid state conformation to explain CD data in solution was indicated in the work of Kirk and colleagues224. They found that the CD of 17˛-acetoxy-6˛- methyl progesterone (99) in solution did not deviate from that of analogous compounds, while the CD of crystalline samples of 99 in SE30 (silicone polymer) or KBr showed an inverted sign of the n ! Ł band. Exhaustive NOE experiments supported the CD data, concluding that the A ring of 99 in solution is in a normal (1˛,2ˇ) half-chair conformation while X-ray studies had shown that 99 crystallizes with an A-ring inverted (1ˇ,2˛) conformation.

214

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

O

 

 

 

 

 

 

 

 

 

20

R

 

Enone

 

20-Oxo

 

 

 

 

17

 

 

 

 

 

 

 

n → π

n → π

π → π

 

π → π

 

 

 

 

 

 

(99) R= OAc

MeOH

1.2 (326)

+3.4 (284)

+6.4 (235sh)

+8.6 (213)

O

 

 

SE30

(+) (330)

(++) (300)

(+++) (255)

 

(+) (205)

 

 

 

 

 

 

 

 

 

 

 

 

R= H

MeOH

1.4 (330)

+2.6 (292)

+6.8 (240sh)

 

+9.9 (220)

 

 

 

KBr

() (332)

(+) (296)

(++) (249)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

20

R

 

 

 

 

 

 

 

 

 

17

 

 

 

 

 

 

 

 

 

 

 

R= H

MeOH

1.2 (325)

+4.0 (284)

+8.0 (233sh)

 

+10.3 (214)

O

Progesterone

SE30

() (328)

(++) (298)

(+++) (230)

 

(++) (210)

 

 

 

 

 

 

 

 

 

R= OH

MeOH

1.0 (331)

+2.6 (293)

+6.7 (235sh)

 

+10.3 (218)

 

 

 

SE30

(+) (328)

(+) (282sh)

(++) (268)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R= OAc

MeOH

1.7 (321)

+3.3 (287)

+4.6 (245sh)

 

+9.4 (215)

 

 

 

SE30

(+) (320)

(+) (300sh)

(++) (250)

 

(−) (210)

 

 

 

 

 

 

 

 

 

 

 

 

C8 H17

 

 

 

 

C8 H17

 

 

C8 H17

AcO

 

 

 

AcO

 

 

 

AcO

 

 

H

H

 

 

H

H

 

 

H

H

 

AcO

O

 

AcO

 

 

O

O

 

 

O

0.79 (340), +16.4 (239)2 4 5

0.89 (341), +18.8 (238)2 4 5

 

sh 0.98 (337), 3.58 (293),

 

 

O

 

 

 

 

 

+12.2 (248)2 4 5

 

 

 

 

 

 

 

R1

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 CH3

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

OH

H

 

 

 

 

O

 

 

H

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

3

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

R1 = CH3 , R2 = OH

 

 

1.12 (317), 6.33 (275),

 

 

 

+3.3 (376), 3.4 (320)

 

 

 

 

 

 

R1 = OH, R2 = CH3

 

 

2.79 (221)2 4 6

O

 

 

3.9 (376), +4.7 (320)2 4 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

H

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

R1 = CH3 , R2

= OH

 

 

 

 

 

 

 

10.7 (349), +15.6 (304)

 

 

 

 

 

 

 

 

R1 = OH, R2

= CH3

 

 

 

 

 

 

 

+9.1 (349), 12.2 (304)2 4 7

 

 

 

 

 

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups