Скачиваний:
30
Добавлен:
15.08.2013
Размер:
865.77 Кб
Скачать

5. Chiroptical properties of compounds containing CDO groups

225

OH

NHC(CH3 )3

O

O

+0.27 (286), +0.79 (267),

6.77 (231)2 8 7

Chiral chalcone epoxides with oxygenation patterns of naturally occurring flavonoids and isoflavonoids were transformed into the corresponding ˛-hydroxydihydrochalcones similar to 115, and their CD was reported288. (C)-(˛R)-Enantiomers showed a weak negative 310 330 nm n ! Ł transition, followed by positive (260 290 nm) and negative (230 250 nm) ! Ł Cotton effects. Due to the profound influence of intramolecular hydrogen bonding (involving ˛- and 20-OH functions) on the conformation and hence the sign of the Cotton effect, conclusions based on CD regarding the absolute configuration of 115 analogues are reliable for similarly derivatized ˛- and 20 -OH functionalities (compare

114 and 115).

 

 

 

 

 

 

 

 

 

 

COPh

 

 

 

 

N-CH3

H3 C-N

 

 

PhCO

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

OCH3

 

 

 

 

 

OCH3

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

(116)

(117)

0.48 (330), +1.21 (277), +5.45 (253)

0.73 (344), 0.72 (263), +2.85 (240)

The absolute configuration assignment of both chiral centers in 2-glycosyl-3- benzoylaziridines was achieved by comparing the CD properties of series cis- (116) and trans- (117) isomers289.

 

R

R

 

 

R

R

 

 

 

 

 

 

R =

 

 

R

R

 

O

 

 

 

 

2.53 (325)

4.90 (334)

5.22 (327)2 9 0

 

 

 

R = CH2 OH (MeOH) +0.54

(326)

 

O

(C6 H12 )

0.30

(366), 0.35 (348)

 

 

R

 

 

0.21

(334), +0.10 (326),

 

 

+0.07 (315)

 

 

 

 

R = CH2 OAc

+0.55

(323)

 

R = CH2 OGlu

+0.57

(324)2 9 1

226

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

O

 

 

 

O

RO

 

 

 

RO

 

 

 

 

 

 

OH

 

 

 

OH

R = H

5.21 (325)

 

R = H

6.19 (330)

R = Glu 5.01 (325)2 9 1

 

R = Glu 5.56 (330)2 9 1

 

 

 

O

 

 

 

 

HO

 

 

R1

 

 

O

Ph

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

OH

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

()-(S)-(118)

 

R1 = CH2 OH, R2 = Me

+5.54 (330)

 

+2.24 (342), 4.77 (311),

R1 = Me, R2 = CH2 OH

+5.60 (330)2 9 1

 

3.02 (252), +4.43 (227)14 6

H

 

 

 

 

 

 

CH3

N

 

Ph

 

S

Ph

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

O

 

O

 

 

 

O

 

 

 

()-(R)-(119)

 

(−)-(R)-(120)

 

 

 

2.25 (368), +2.81 (326),

2.56 (364), +2.01 (322),

+2.33 (346),

 

+0.99 (267), 5.93 (235)14 6

+2.57 (271), 11.32 (229)14 6

+0.61 (303),

 

 

 

 

 

 

 

0.61 (286), +6.06 (255)2 9 2

The n ! Ł and ! Ł CD transitions of aza- (119) and thiaflavonone (120) were identified. Opposite signs were found for the Cotton effects of ( )-119 and ( )- 120 as compared to those of known ( )-(S)-118. According to the helicity rule, the heterocyclic ring must also adopt the opposite conformation because the phenyl substituent is equatorially oriented in all three flavonones. Thus, the (2R) absolute configuration was assigned to ( )-119 and ( )-120146.

H

H

 

 

 

 

 

N

 

 

 

N

H

H

O

O

CHO

O

 

R CH2 CH3

 

 

 

1.43 (305), 1.02 (271)

+0.49 (343), 0.11 (286),

R = Me 2.40 (366), +1.75 (332),

1.02 (225), +9.30 (201)2 9 3

+1.42 (243), 4.30 (210)2 9 3

+0.60 (303), 1.95 (274)

 

 

R = nPr +1.10 (362), 1.35 (332),

 

 

0.50 (304), +1.35 (273)2 9 4

5. Chiroptical properties of compounds containing CDO groups

227

Et

O

O

 

6.18 (358), +4.97 (293),

+6.29 (355), 1.17 (275),

13.5 (258), +38.2 (232)2 9 5

0.63 (258), 2.61 (225)2 8 3

O

O

 

 

 

H

 

 

 

H

O

O

+20.2 (357), 11.5 (293),

7.12 (348), +7.29 (299),

+58.6 (265), 48.2 (241)2 8 3

16.8 (259), +18.9 (244),

 

 

 

+56.8 (209), 54.8 (198)2 9 6

 

 

 

O

H

Ph

 

 

 

H

 

 

CO2 H

 

 

 

 

O

 

+0.50 (331), +1.2 (291),

1.06 (331), 0.86 (293),

3.9 (268), 7.2 (251),

0.35 (269), 6.12 (244),

+38.1 (206)2 9 6

 

 

+6.66 (210)2 9 6

Octant diagram projections for the n ! Ł 335 nm transition of axially chiral conformational enantiomers ( GD 19.8 kcal mol 1) of 2,6-dimethyl-1,5-bis(2,2- dimethylpropanoyl)naphthalene (121a and 121b)297 led to the assignment of absolute configuration.

O

O O

C

C

O O

(121a)

O

(121b)

 

228

Stefan E. Boiadjiev and David A. Lightner

The enantiomeric conformers 121a and 121b were resolved using low-temperature HPLC on a chiral stationary phase, and their differential absorption (A1 Ar) was reported as a signal from an on-line CD detector.

Two other ketones (122) containing axially chiral aromatic compounds were recently reported298.

R

H

(122)

R = COCH3 +0.14 (355), 26.3 (287)

R = COPh +0.03 (376), 33.6 (304)

4

COCH3

3

1

2

(+)-(123)

+0.10 (342), 0.19 (317), +28.3 (267), 54.7 (243), +26.2 (223), 22.0 (209)

2-Acetyl[a,c,e,g]cyclooctatetraene (123) has been resolved by repeated HPLC on swollen microcrystalline triacetylcellulose, and its CD has been reported299. Both longerwavelength Cotton effects were assigned to n ! Ł transitions from the acetyl group, possibly in two different conformations. The absolute configuration of (C)-123 was assigned as (R) for the 1-2 and 3-4 biphenyl units on the basis of calculations by the coupled oscillator technique of the rotational strengths of the dominant transitions (267 and 243 nm).

 

 

 

CH3

 

O

R

 

 

 

 

 

 

 

 

H

 

 

 

 

 

R1

R2

()-(S)

 

 

 

 

R = H 11.12

(318)

R1

= H2 , R2 = O +10.09 (321)

R = OH 10.00

(321)3 0 0

R1

= O, R2 = H2

9.19 (321)3 0 1

5. Chiroptical properties of compounds containing CDO groups

229

O

O

 

O

 

O

1.5 (475), 1.8 (405), +0.8 (358),

1.0 (475), 0.6 (400), 0.4 (370)

4.8 (316), +0.8 (290)3 0 2

 

+1.6 (320), 3.9 (270)3 0 2

 

O

 

 

 

 

O

O

 

 

 

O

 

 

 

 

O

 

 

 

O

MeO

 

 

 

MeO

 

O

 

 

 

 

 

CO2 H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

MeO

 

 

 

MeO

 

 

 

OMe

 

 

 

 

OMe

+1.32 (339), + 6.64 (297)

 

1.01 (338), 6.85 (304),

0.42 (275), +29.1 (243),

 

+5.29 (276), 41.0 (244),

29.1 (221)3 0 3

 

+39.6 (218)3 0 3

 

 

O

 

 

 

 

 

 

R

 

 

 

 

 

R

R1

 

 

 

 

R1

 

 

 

 

 

 

CH3

COCH3

+2.45 (280), +10.79 (264), 11.83 (247)

 

CH3

C2 H5

+0.22 (284), +1.54 (260), +1.72 (254)

 

H

CHO

+2.45 (293), +11.63 (267), 12.85 (252)

 

OCH3

COCH3

 

+1.80 (287), +9.43 (257), 10.96 (240)3 0 4

230

Stefan E. Boiadjiev and David A. Lightner

 

R

O

H

O

 

 

 

 

 

O

O

 

R = H + 0.18 (327), 0.19 (287)

+2.37 (311), 0.74 (267)2 6 0 ,2 6 1

R = OH 0.28 (326), +1.55 (264)2 6 0 ,2 6 1

 

HO

O

O

O

0.66 (330)3 0 5

O

O

O

OO

+2.8 (216)3 0 6

OR

OMe

O

OMe O

R = H +1.8 (406), +4.6 (344), 5.8 (307), +1.8 (283),

11.8 (239), +13.6 (217)3 0 6 R = TBDMS +5.6 (344), 6.2(307),

+2.6 (283), 11.7 (240),

+16.5 (218)3 0 6

OH

O

O

 

O

 

+ 0.92 (336)3 0 5

 

O

OR1

 

 

O

OR2

O

R1 = R2 = H +2.8 (345), +6.4 (244),

 

4.5 (229)3 0 6

R1 = SO3 Na, R2 = H 4.8 (301),

 

+3.3 (244), 11.5 (230)3 0 6

R1 = R2 = CH3 +1.8 (413),

 

+1.4 (383), +1.7 (363),

 

+2.8 (347), 5.5 (303),

 

+4.6 (244), 8.9 (232)3 0 6 ,3 0 7

 

OH

O

H

 

 

O

O

O

1.8 (335), +3.9 (250)3 0 8

 

5. Chiroptical properties of compounds containing CDO groups

231

 

OH

 

 

 

 

OR

H

H

O

 

 

 

 

 

 

 

 

N

 

 

 

 

O

S

 

 

O

 

 

 

 

 

OR

O

O2

O

O

 

 

 

R = Me +0.7 (397), 3.8 (326),

 

+1.8 (399), 3.5 (337)

 

 

 

+2.0 (281), +3.4 (235)

 

+4.0 (304), 1.2 (277),

 

R = H +0.5 (420), 4.5 (325),

 

6.6 (243)3 0 9

 

 

 

+2.1 (282)3 0 8

 

 

 

 

 

O

 

 

 

 

 

O2

 

 

 

 

 

S

 

 

 

 

 

N

 

O

 

 

 

 

 

 

 

 

H

O

 

 

 

 

O

 

 

 

 

+2.0 (414), 4.0 (346),

 

 

 

 

+2.8 (303), +6.3 (282),

 

 

 

 

4.0 (258), 6.7 (239)3 0 9

 

 

R1O

H

 

 

 

 

O

H

 

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

R1 = β-D-Glu, R2 = H

 

 

OR2

 

4.01 (320), 1.27 (295),

 

 

 

4.03 (275), +5.45 (239)

 

 

O

 

 

 

OMe R1 = R2 = H

 

 

 

 

 

 

 

OMe

 

4.79 (320), 1.30 (295),

 

HO

 

5.09 (275), +7.88 (237)310

 

 

 

 

 

 

O

O

 

 

 

 

 

O

 

 

 

 

0.39 (320), 0.82 (295),

O

1.39 (275)3 10

 

OMe

 

OMe

232

Stefan E. Boiadjiev and David A. Lightner

 

 

 

 

 

Rifamycin S (R = OH)

 

 

 

 

 

MeOH/H+

 

 

 

 

 

+7.06 (437), 4.89 (353), +12.4 (300),

 

 

 

19

 

24.6 (278), +41.4 (225)3 11

AcO

 

 

 

MeOH/OH

OH

OH

1

 

 

+2.81 (515), +6.38 (426), +22.9 (338),

 

 

 

 

R

O

H

 

22.7 (314), 9.83 (270), +25.7 (227)3 11

 

 

 

16

R = OCH3

CH3 O

 

 

N

 

 

 

 

 

 

 

2 (470), +5 (342), +28 (310), 10 (285),

 

 

 

 

 

 

 

 

O

 

15 (254), +81 (233), 74 (209)3 12

 

O

 

 

 

16,17,18,19 - Tetrahydrorifamycin

 

 

 

 

+4.81 (420), 2.29 (346), +12.0 (301),

 

 

O

 

 

 

O

 

 

5.13 (274), +7.38 (239)3 11

 

 

 

 

O

Hexahydrorifamycin

+3.93 (433), +3.99 (333), +8.62 (300), 3.55 (274), +3.02 (252), +2.37 (235)3 11

The observed complex CD of the antibiotic rifamycin chromophore was simulated (250 190 nm) by means of coupled oscillator theory, from coupling of the long-axis polarized aromatic transition with dienone transition312.

O O

O

 

 

O

O

 

OCH3

 

 

 

 

 

5.48 (354), 2.0 (264),

 

 

 

 

 

19.38 (219)3 13

 

 

 

OH

O

OH

OH

O

OH

CHO

 

 

 

 

 

 

O

 

 

 

 

 

 

 

HO

O

 

 

 

 

 

 

 

 

O

 

 

O

 

 

H

 

CO2 Me

 

 

 

CO2 Me

OH

 

 

 

 

 

 

+3.50 (370), +2.20 (340), +3.06 (330),

 

1.71 (405), +4.29 (360),

 

2.63 (269), 2.85 (263), 12.7 (224)3 13

 

+2.15 (312), 6.15 (276),

 

 

 

 

 

 

+8.01 (237)3 13

An octant projection diagram predicts a dissignate halogen contribution in the C 5 halogen-substituted bicyclo[2.2.1]hept-5-en-2-ones (125 and 126), and a consignate

5. Chiroptical properties of compounds containing CDO groups

233

 

 

 

 

 

 

N

O

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

O

 

OH

H

 

H

 

 

 

 

 

 

 

 

 

O

 

 

 

OH

O

 

 

 

 

 

 

 

O

O

OCH3

 

 

N

 

 

 

 

 

 

 

H

 

 

2.58 (325), +1.42 (290),

 

+1.8 (301), 4.56 (269)3 13

+1.42 (270)3 13

 

 

 

 

 

 

OH

O

 

 

OH

 

O

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

HO

R

 

O

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

OH

 

O

 

R = H 4.60 (299), 7.60 (260),

 

+0.06 (330)3 16

 

+1.40 (231), +6.16 (195)3 14

 

 

 

 

 

R = bond sh 2.63 (307), 17.93 (273),

 

 

 

 

 

+17.90 (229) 3 13 -3 15

 

 

 

 

 

 

OH

O

 

O

 

OH

 

 

 

 

H

H

 

 

 

 

 

 

H

 

 

 

 

 

 

 

H

 

 

 

 

 

OH

O

 

O

 

OH

 

 

 

0.08 (500), 0.08 (280)3 16

 

 

 

 

OH

OH

O

OH

H

OH

 

 

 

 

 

 

 

OH

O

O

OH

0.55 (304), +0.55 (276), 1.27 (234)3 16

234

Stefan E. Boiadjiev and David A. Lightner

OH

O

O

OH

H OH

 

 

 

 

OH

OH

O

OH

 

0.91 (302), 0.91 (270), +3.45 (234), +4.73 (218)3 16

 

 

 

 

O

X

O

 

X

 

 

 

 

 

(124)

X = H

+18.8

(306)2 0 2

(127) X = Cl +18.6

(320), +28.8 (308),

(125)

X = Cl

+20.4

(318),

+30.8 (306),

+23.2

(297), 6.6 (232)2 0 3

 

 

+25.8

(295), 5.6 (220)2 0 3

(128) X = Br +23.4

(320), +34.0 (308),

(126)

X = Br

+23.3

(320),

+34.4 (308),

+28.4

(297), 6.6 (232)2 0 3

+28.3 (297), 7.2 (220)2 0 3

 

O

O

 

 

O

()-(129)

(+)-(130)

16.9 (304)

 

contribution in C 6 substituted enones 127 and 128. The experimental data showed no significant difference (n ! Ł ) between unsubstituted and ˇ- or -halogenated derivatives203. The results confirmed the interpretation that the n ! Ł transition in ˇ, -enones is to a large extent determined by an admixture of ! Ł olefinic transitions polarized along the Cˇ C direction202,317.

The C2 symmetrical 5,7-dioxobicyclo[2.2.2]oct-2-ene (129) CD has been reported96. Its absolute configuration was assigned utilizing the extended octant rule200 and correlated with that of (C)-130. Optically active 129 was reported earlier as formed in 3.5%ee by preferential photodestruction of (1S,4S)-enantiomer using right circularly polarized light318.

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups