5. Chiroptical properties of compounds containing CDO groups |
245 |
OR2
H
|
|
R1 |
|
|
(152) |
R1 |
= O, R2 |
= 4-ClC6 H4 CO |
+25.6 (247), −1.8 (230), +8.4 (212) |
(153) |
R1 |
= O, R2 |
= H |
sh +7.6 (236), +11.0 (215) |
(154) |
R1 |
= OH, H, R2 = 4-ClC6 H4 CO |
+5.0 (241) |
|
The pure contribution from exciton coupling in testosterone 17ˇ-(p-chlorobenzoate) (152) was estimated by subtracting the CD spectra of exciton interaction-free 17ˇ-hydroxy- 4-en-3-one (153) and 4-en-3ˇ-ol-17ˇ-(p-chlorobenzoate) (154) from the experimental CD spectrum of 152. The exciton CD curve (C16.2 (247), 12.8 (230)) obtained is much more symmetrical, as required by the theory349. Several more examples of benzoates and sorbates of steroidal 4-en-3-ones were treated in similar way, thus smoothing the imbalance of the exciton Cotton effects due to contributions of component chromophores.
H |
|
O |
OH |
4-BrC6 H4 COO |
|
H |
|||
|
|
|
H |
|
|
HO |
|
|
|
O |
H |
|
|
|
|
|
|
||
CH(OEt)2 |
|
O |
|
|
|
|
H |
H |
|
|
OH O |
|
||
PhCOO |
H |
|
H O |
|
|
|
|
|
|
−1.65 (335), −3.00 (242), |
+0.3 (384), −0.8 (336), |
+3.4(256), −8.4(238)3 53 |
||
+4.00 (217)3 50 |
+2.0 (300), −24.1 (270), |
|
||
|
+21.0 (250)3 51 |
|
|
|
The absolute configuration of Wieland Miescher ketone analogues bearing an angular protected hydroxymethyl group was unambiguously determined after regioand stereoselective reduction of the saturated ketone function to cis-alcohols and application of the exciton chirality method to bicyclic enone-benzoate chromophoric systems 155 158352.
|
R2 |
OR1 |
R2 O |
||
|
|
|
|
OR1 |
|
|
|
s |
|
|
|
|
|
s |
|
|
|
O |
|
|
O |
|
|
(155) |
R1 = 4-ClC6 H4 CO, |
(157) |
R1 |
= 4-MeOC6 H4 CO, |
|
|
R2 |
= H +40.6 (247), |
|
R2 |
= Ac −30.4 (261), |
|
|
−16.0 (228) |
|
|
+14.7 (241) |
(156) |
R1 = 4-ClC6 H4 CO, |
(158) |
R1 |
= 4-MeOC6 H4 CO, |
|
|
R2 |
= OMEM +38.1 (248), |
|
R2 = Me −25.0 (260), |
|
|
|
−15.5 (230)3 52 |
|
|
+12.1 (242)3 52 |
246 |
Stefan E. Boiadjiev and David A. Lightner |
OH
R
4
O
OH |
CHO |
(159)
R = CN +49.4 (261), −37.0 (227)
R = CO2 CH3 +50.5 (261), −38.9 (228)3 54
CHO
(CH3 )2 N
O
O
(160)
The (4R)-absolute configuration of a new chromophore of native visual pigment (159) (negative Cotton effect at 375 nm, negative Cotton effect at 254 nm) was established by the CD exciton chirality method applied to the 4-(dimethylamino)cinnamate (160). The split negative (381 nm) and positive (338 nm) exciton effects of 160 show a counterclockwise helicity between pentaenal and ˛-4-(dimethylamino)cinnamate chromophores355.
MOMO |
OMOM |
|
OMe |
− |
|
|
H Ar |
|
|||
|
OR |
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
Ar |
|
|
|
|
|
O |
Ar |
|
O |
|
|
O |
|
|
(161) |
|
|
|
|
|
−4.57 (283), +5.81 (245) |
|
|
R = 4-MeOC6 H4 CO |
|
|
MOMO |
OMOM |
|
OMe |
|
|
|
OR |
|
|
|
O
(162)
+5.10 (282), −7.97 (245)
5. Chiroptical properties of compounds containing CDO groups |
247 |
Exciton interaction between p-methoxybenzoate and benzoyl chromophores in the preferred conformation of 161 allowed for assignment of the (˛R) absolute configuration on the basis of an observed negative exciton chirality356. This also correlates with the absolute configuration of a novel natural 4-methoxy-˛R,20 ,40-trihydroxydihydrochalcone. A series of 12 differently-substituted 161 or 162 analogues with an oxygenation pattern similar to that in natural flavonoids was reported by the same group. As with 161 or 162, exciton-type Cotton effects were observed288.
|
O |
|
O |
CH3 |
H |
CH3 |
H |
CH3 O |
|
CH3 O |
|
|
OR |
|
OR |
R = H |
−14.5 (333), +5.0 (295), |
|
(163) R = H −13.2 (340), +7.2 (296), |
|
+11.7 (260) |
|
|
|
|
+1.5 (270), +2.1 (263) |
|
R = 4-CH3 OC6 H4 CO −10.9 (335), |
|
||
|
(164) R = 4-CH3 OC6 H4 CO |
||
|
+5.1 (293), +4.9 (285), |
|
|
|
|
−5.8 (345), +8.0 (299), |
|
|
+22.9 (263), −10.9 (245)3 57 |
|
|
|
|
−72.1 (262), +16.0 (245)3 57 |
|
|
|
O |
|
|
|
|
|
|
CH3 |
|
H |
CH3 O
O
−9.9 (347), +8.2 (303), −15.8 (267)3 57
The absolute configuration of the benzocycloheptenone, ( )-isofavelol (163), was confirmed as (9R,12R) by X-ray crystallographic analysis of its 4-bromobenzoyl derivative, and by exciton chirality between the o-ketostyrene and 4-methoxybenzoate chromophores in 164357.
No exciton coupling was observed for the dialdehyde 165. The CD of (C)-166 also shows a simple pattern. The small amplitude of those Cotton effects can be attributed to the complicated polarization spectra of benzophenone chromophore and to the conformational flexibility of the 2-tolyl group. In contrast to (C)-165 and (C)-166, the quinone (C)-167 exhibits relatively strong Cotton effects ascribed to exciton interaction between favorably oriented transition moments in the 9,10-anthraquinone chromophore359.
The CD spectrum of ketone 168 also exhibits split Cotton effects: ε275 17.4 andε252 C24.7, corresponding to an intramolecular charge transfer transition at 261 nm (ε 28 300). Since this transition is polarized along the direction from the benzene ring to
248 |
Stefan E. Boiadjiev and David A. Lightner |
O
H
O
HO
O
|
O |
|
|
O |
|
|
|
|
|
||
|
|
+ |
|
H |
|
|
O |
O |
|
|
|
|
|
|
|
||
|
|
HO |
|
|
|
O |
|
O |
|
|
|
|
|
|
|
||
+19.4 (357), −31.6 (246)3 58 |
|
O |
|
|
|
|
|
|
|
− |
|
|
|
O |
|
|
|
O |
|
|
|
|
|
|
|
−12.2 (397), +12.3 (331), −60.0 (261)3 58 |
|||
|
O |
|
|
O |
|
O |
|
O |
|
|
|
OH |
OH |
OH |
|
OH |
|
|
|
|
|||
+21.2 (359), −34.9 (246)3 58 |
−10.0 (397), +9.7 (331), |
− 48.2 (262)3 58 |
|||
|
CHO |
|
O |
|
|
|
|
|
|
CH3 |
|
CHO H |
H |
CH3 |
H |
||
|
|||||
H |
H |
||||
|
|
|
|||
H |
O H |
|
H |
||
|
|
||||
|
|
|
|||
(165) |
|
|
(166) |
||
−1.1 (335), +16.0 (297), |
+6.6 (289), +10.6 (254), |
||||
+29.4 (240), +31.2 (219)3 59 |
−4.1 (228)3 59 |
||||
5. Chiroptical properties of compounds containing CDO groups |
249 |
||||
|
|
O |
|
|
|
|
|
|
O |
|
O |
|
|
|
|
|
|
O |
|
|
O |
|
|
|
|
|
|
|
|
|
H |
H |
H |
H |
|
|
|
|
|||
|
|
|
|
|
|
O |
H |
H |
H |
H |
|
|
|
||||
|
|
|
|
|
|
(167) |
|
(168) |
|
|
|
+33.6 (360), −2.1 (324), −44.1 (279), |
+0.4 (330), +2.3 (302), |
|
|
||
+133.4 (260), −26.3 (247), +12.3 (232) |
−17.4 (275), +24.7 (252), +51.9 (214)3 6 0 |
|
|||
+34.2 (221)3 59 |
|
|
|
|
|
O
H
H
O
(169)
−37.6 (351), +22.9 (315), −12.6 (279),
−89.0 (254), +222.0 (217)3 6 1
HO |
|
|
|
|
|
OMe |
OH O |
|
|
|
|
|
OMe |
OH |
|||
O |
|
O |
|
O |
|
|||
|
|
|
|
|
|
|||
O |
OH |
|
|
|
|
MeO |
O |
|
|
|
|
|
|
||||
|
|
|
MeO |
|
|
|||
|
|
|
|
|
O |
OH |
||
|
|
|
MeO |
|
|
MeO |
||
O |
OH |
H |
|
|
O |
|
||
|
|
|
|
|
|
O |
||
O |
|
O |
|
|
|
|
||
|
|
|
|
|
|
|||
HO |
|
|
|
OMe |
OH |
OMe |
O |
|
|
|
|
O |
|
||||
|
X |
|
|
|
|
|
|
|
(170) X = Cl |
|
|
|
−5.05 (432), +4.00 (373), −1.87 (403), +1.32 (361), |
||||
(171) X = H + 3.80 (342), −18.40 (294) |
+5.70 (343), |
−1.04 (320), +1.20 (350), +1.49 (343), |
||||||
+ 13.60 (275), −24.10 (247), |
||||||||
+2.61 (303), |
−73.1 (282), −33.0 (288), +70.24 (273), |
|||||||
+ 39.70 (231)362 |
|
|||||||
|
+70.9 (267), |
−17.4 (250), −51.24 (251), −31.66 (245)3 6 3 |
||||||
|
|
|
|
|||||
|
|
|
|
−6.53 (240)3 6 3 |
|
|||
250 Stefan E. Boiadjiev and David A. Lightner
the carbonyl group, a positive exciton chirality is predicted similar to other dibenz[a, h]anthracene derivatives where it was actually observed. It was suggested that homoconjugation between the two tetralone chromophores changes the relative sequence of relevant energy levels360.
The absolute configuration of diketone 169 was confirmed by comparison of the experimental CD with that calculated by the SCF-CI-Dipole Velocity MO method361.
By simplifying the chromophoric system of gilmaniellin 170 to m-divinylbenzene and applying the exciton chirality method to the CD couplet at 247 and 231 nm of 171, its absolute configuration was determined as shown362. The sign of n ! Ł CE (342 nm) is in agreement with the rule234, which correlates the CD of transoid enone (acetophenone moiety) with its helicity.
VII. ADDENDUM
The following references/data were found during a search of Chem. Abstr., Gen. Subject Index, ‘Circular dichroism’, Vol. 122 (Jan. June), 1995.
Conformational analysis of 3,3-disubstituted piperidin-4-ones (172) using NMR and CD spectroscopy was presented recently364.
O |
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
Me |
R = Me, CH2 Ph, (S)-CHMePh |
|
|
|
|
||
|
CH2 CH2 R1 |
R1 |
= CN, CO2 Me |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
O |
|
R |
|
|
|
|
|
|
|
|
(172) |
|
|
|
|
|
(−)-(1R, 5S)-(173)3 6 5 |
||
|
|
|
|
|
−0.42 (283), −1.25 (210)159 |
|||
|
|
|
|
|
|
|
SR |
|
|
|
|
SR |
|
|
|
|
|
|
|
|
|
|
|
|
SR |
|
|
|
|
SR |
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
O |
|
|
|
|
|
|
|
Reference 368 |
|
|
Reference 368 |
|
||
|
εmax |
εmax |
εmax |
εmax |
||||
R |
n ! Ł |
! Ł |
n ! Ł |
! Ł |
||||
|
Dioxane |
EtOH |
Dioxane |
EtOH |
||||
CH3 |
C0.025 |
408 |
C1.00 |
340 |
0.56 |
380 |
C12.5 |
300 |
CH3CH2 |
C0.058 |
417 |
C0.67 |
330 |
0.82 |
375 |
C11.2 |
300 |
PhCH2 |
C0.179 |
413 |
C4.31 |
337 |
0.99 |
375 |
C9.9 |
325 |
(CH2)2 |
C0.052 |
380 |
C1.62 |
342 |
0.37 |
355 |
C13.1 |
315 |
(CH2)3 |
C0.068 |
397 |
C3.76 |
345 |
0.60 |
375 |
C16.9 |
325 |
5. Chiroptical properties of compounds containing CDO groups |
251 |
Berg and Butkus365 reinvestigated the CD spectra of bicyclo[3.3.1]nonane-2,6-dione (69) and bicyclo[3.3.1]nonane-2,9-dione (70). They analyzed earlier reported CD spectral data159 and compared them with calculated CD using Schellman’s computational method. The comparison showed that the absolute configuration of ˛,ε-diketone ( )-69 is in agreement with the earlier assignment. The absolute configuration of the ( )-enantiomer of ˛, -diketone 70, however, has to be reversed to (1R,5S) as shown for 173. The incorrect earlier empirical assignment159 was explained by the spatial relationship of the two carbonyl chromophores in 173. In the major chair-boat conformer they are placed close to the nodal planes where Cotton effects change their sign. In addition, the cyclohexanedione ring in 173 adopts a boat conformation365. The calculations also confirmed strong transannular orbital interactions in 173, as was observed in 69366.
|
Cl |
|
OR |
O |
|
|
|
|
|
|
OMe |
|
MeO |
|
|
O |
|
|
MeO |
|
|
O |
|
|
H |
|
|
|
OMe |
|
O |
|
|
|
|
|
|
|
OR |
O |
|
+2.02 (332), −26.35 (272)3 6 7 |
|
|
(+)-(aR) |
|
|
|
R = H +28.1 (360), −66.4 (324), +24.8 (267) |
||||
|
R = Me +38.9 (344), −69.1 (310), +29.5 (258) |
||||
|
R = (+)-camphor- |
+71.7 (348), −79.4 (314), +33.9 (249)3 6 9 |
|||
|
sulfonyl |
|
|
|
|
|
CH3 |
O |
|
|
CH2 |
AMBE |
C |
C |
|
OCO |
CH |
|
|
|
|
|
|
|
OCH3 |
|
|
CH2 |
|
|
|
|
|
|
|
|
|
|
|
OCO |
CH |
|
|
|
|
|
n |
|
n |
|
π |
π |
|
π |
|
|
|
||||
AMBE co-units ∆ε.102 (λ) |
∆ε.102 (λ) |
∆ε.102 (λ) |
||||
(mol%) |
|
|
|
|
|
|
79 |
−2.7 (339) |
−9.5 (270) |
−22.9 (253) |
|||
15 |
−11.2 |
(338) |
−26.5 (269) |
− 70.7 (255) |
||
∆ε referred to one AMBE repeating unit 3 70 .
252 |
Stefan E. Boiadjiev and David A. Lightner |
|
O |
O |
O |
O |
|
|
|
||
|
(174) |
|
|
|
EtOH |
+2.14 (309), −2.59 (282) |
−0.31 (441), +0.94 (351), |
||
Hexane |
+2.16 |
(315) |
+19.63 (272)3 71, 3 72 |
|
|
+1.63 |
(305), −1.96 (282) |
|
|
Sotiropoulos |
and |
colleagues371 reported |
recently the crystal |
structure and |
CD spectrum of (1R,3R,4R)-3-((1R,3R,4R)-1,7,7-trimethylbicyclo[2.2.1]-2-oxohept-3-yl)- 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (174, 3,30-dicamphor). This compound appears to be the first example of exciton coupling between two n ! Ł transitions from isolated carbonyl chromophores, as incorporated in ˛,υ-diketone 174.
VIII. ACKNOWLEDGMENTS
We wish to thank Professors Carl Djerassi, Albert Moscowitz and Gunther¨ Snatzke, without whose pioneering work much of what is written in this chapter would not have been possible. Special thanks go to those authors, Professors Djerassi and J. F. King, and journals or books for allowing use of illustrations from their articles.
IX. REFERENCES
1.J. Sandstrom,¨ in The Chemistry of Acid Derivatives, Supplement B (Ed. S. Patai), Wiley, Chicester, 1992, p. 95.
2.J. K. Gawronski,´ in The Chemistry of Enones, Part 1 (Eds. S. Patai and Z. Rappoport), Wiley, Chichester, 1989, p. 55.
3.C. Djerassi, Optical Rotatory Dispersion, McGraw-Hill, New York, 1960.
4.P. Crabbe,´ Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry, HoldenDay, San Francisco, 1965.
5.L. Velluz, M. Legrande and M. Grosjean, Optical Circular Dichroism, Verlag Chemie, Weinheim, 1965.
6.Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry, G. Snatzke, (Ed.) Sadtler Res. Labs, Inc., Philadelphia, 1967.
7.P. Crabbe,´ Applications de la Dispersion Rotatoire Optique et du Dichroisme Circulaire Optique en Chimie Organique, Gauthier-Villars, Paris, 1968.
8.P. Crabbe,´ ORD and CD in Chemistry and Biochemistry, Academic Press, New York, 1972.
9.F. Ciardelli and P. Salvadori (Eds.), Fundamental Aspects and Recent Developments in Optical Rotatory Dispersion and Circular Dichroism, Heyden & Son, New York, 1973.
10.M. Legrand and M. J. Rougier, in Stereochemistry; Volume 2, Dipole Moments, CD or ORD (Ed. H. B. Kagan), Geo. Thieme, Stuttgart, 1977.
11.S. Mason (Ed.), Optical Activity and Chiral Discrimination, D. Reidel, Dordrecht, 1979.
12.E. Charney, The Molecular Basis of Optical Activity. Optical Rotatory Dispersion and Circular Dichroism, Wiley, New York, 1979.
13.S. F. Mason, Molecular Optical Activity and The Chiral Discriminations, Cambridge Univ. Press., Cambridge, 1982.
14.N. Purdie and H. G. Brittain (Eds.), Analytical Applications of Circular Dichroism, Elsevier, Amsterdam, 1994.
5. Chiroptical properties of compounds containing CDO groups |
253 |
15.K. Nakanishi, N. Berova and R. Woody (Eds.), Circular Dichroism: Interpretation and Application, VCH Publishers, New York, 1994.
16.W. Moffitt, W. B. Woodward, A. Moscowitz, W. Klyne and C. Djerassi, J. Am. Chem. Soc., 83, 4013 (1961).
17.W. Moffitt and A. Moscowitz, Abstr. Pap.-Am. Chem. Soc., 133d, Abst. No. 1 (1958).
18.G. Snatzke, Angew. Chem., Int. Ed. Engl., 18, 363 (1979).
19.C. W. Deutsche, D. A. Lightner, R. W. Woody and A. Moscowitz, Annu. Rev. Phys. Chem., 20, 407 (1969).
20.T. D. Bouman and D. A. Lightner, J. Am. Chem. Soc., 98, 3145 (1976).
21.D. A. Lightner, T. D. Bouman, W. M. D. Wijekoon and A. E. Hansen, J. Am. Chem. Soc., 108, 4484 (1986).
22.G. Snatzke, B. Ehrig and H. Klein, Tetrahedron, 25, 5601 (1969).
23.J. A. Schellman, Acc. Chem. Res., 1, 144 (1968).
24.T. D. Bouman and A. Moscowitz, J. Chem. Phys., 48, 3115 (1968).
25.C. Djerassi and W. Klyne, J. Chem. Soc., 2390 (1963).
26.D. N. Kirk, W. Klyne and W. P. Mose, Tetrahedron Lett., 1315 (1972).
27.D. A. Lightner and G. D. Christiansen, Tetrahedron Lett., 883 (1972).
28.D. A. Lightner and T. C. Chang, J. Am. Chem. Soc., 96, 3015 (1974).
29.D. E. Jackman and D. A. Lightner, J. Chem. Soc., Chem. Commun., 344 (1974).
30. D. A. Lightner, T. C. Chang, D. T. Hefelfinger, D. E. Jackman, W. M. D. Wijekoon and
J. W. Givens, III, J. Am. Chem. Soc., 107, 7499 (1985).
31.Y. H. Pao and D. P. Santry, J. Am. Chem. Soc., 88, 4157 (1966).
32.A. Moscowitz, Adv. Chem. Phys., 4, 67 (1962).
33.R. R. Gould and R. Hoffmann, J. Am. Chem. Soc., 92, 1813 (1970).
34.G. Snatzke and D. Marquarding, Chem. Ber., 100, 1710 (1967).
35.G. Snatzke and G. Eckhardt, Tetrahedron, 26, 1143 (1970).
36.G. Snatzke and G. Eckhardt, Tetrahedron, 24, 4543 (1968).
37.C. Coulombeau and A. Rassat, Bull. Soc. Chim. France, 71, 516 (1971).
38.R. N. McDonald and R. N. Steppel, J. Am. Chem. Soc., 92, 5664 (1970).
39.A. H. Becket, A. Q. Khokhar, G. P. Powell and J. Hudec, J. Chem. Soc., Chem. Commun., 326 (1971).
40.H. Ripperger, Z. Chem., 17, 250 (1977).
41.J. F. Tocanne, Tetrahedron, 28, 389 (1972).
42.D. A. Lightner and D. E. Jackman, J. Am. Chem. Soc., 96, 1938 (1974).
43.D. N. Kirk and W. Klyne, J. Chem. Soc., Perkin Trans. 1, 1076 (1974).
44.W. Klyne and D. N. Kirk, Tetrahedron Lett., 1483 (1973).
45.J. Hudec, J. Chem. Soc., Chem. Commun., 829 (1970).
46.M. T. Hughes and J. Hudec, J. Chem. Soc., Chem. Commun., 831 (1970).
47.E. Ernstbrunner and J. Hudec, J. Am. Chem. Soc., 96, 7106 (1974).
48.J. M. Howell, J. Chem. Phys., 53, 4152 (1970).
49.D. N. Kirk, Tetrahedron, 42, 777 (1986).
50.A. Rodger and M. G. Moloney, J. Chem. Soc., Perkin Trans. 2, 919 (1991).
51.D. A. Lightner, B. V. Crist, N. Kalyanam, L. M. May and D. E. Jackman, J. Org. Chem., 50, 3867 (1985).
52.D. A. Lightner and V. V. Toan, Tetrahedron, 43, 4905 (1987).
53.D. A. Lightner and V. V. Toan, J. Chem. Soc., Chem. Commun., 210 (1987).
54.C.-Y. Yeh and F. S. Richardson, Theor. Chim. Acta, 43, 253 (1977).
55.G. Barth and C. Djerassi, Tetrahedron, 37, 4123 (1981).
56.C. Djerassi, W. Closson and A. E. Lipman, J. Am. Chem. Soc., 78, 3163 (1956).
57.C. Djerassi and B. Tursch, J. Am. Chem. Soc., 83, 4609 (1961).
58.W. L. Meyer and A. P. Lobo, J. Am. Chem. Soc., 88, 3181 (1966).
59.C. S. Barnes and C. Djerassi, J. Am. Chem. Soc., 84, 1962 (1962).
60.J. W. Simek, D. L. Mattern and C. Djerassi, Tetrahedron Lett., 3671 (1975).
61.C. Djerassi, C. L. VanAntwerp and P. Sundararaman, Tetrahedron Lett., 535 (1978).
62.S. F. Lee, G. Barth, K. Kieslich and C. Djerassi, J. Am. Chem. Soc., 100, 3965 (1978).
63.C. S. Pak and C. Djerassi, Tetrahedron, 4377 (1978).
64.P. Sundararaman and C. Djerassi, Tetrahedron Lett., 2457 (1978); Errata, ibid., 4120 (1979).
65.S. G. Levine and B. Gopalakristinan, Tetrahedron Lett., 699 (1979).
254 |
Stefan E. Boiadjiev and David A. Lightner |
66.H. Numan and H. Wynberg, J. Org. Chem., 43, 2232 (1978).
67.D. A. Lightner, J. K. Gawronski´ and T. D. Bouman, J. Am. Chem. Soc., 102, 1893 (1980).
68.P. Sundararaman, G. Barth and C. Djerassi, J. Org. Chem., 45, 5231 (1980).
69.S. F. Lee, G. Barth and C. Djerassi, J. Am. Chem. Soc., 103, 295 (1981).
70.D. A. Lightner, W. M. D. Wijekoon and B. V. Crist, Spectroscopy: An International Journal, 2, 255 (1983).
71.D. A. Lightner and B. V. Crist, Tetrahedron, 41, 3021 (1985).
72.K. M. Wellman, P. H. A. Laur, W. S. Briggs, A. Moscowitz and C. Djerassi, J. Am. Chem. Soc., 87, 66 (1965).
73.A. Moscowitz, K. M. Wellman and C. Djerassi, J. Am. Chem. Soc., 85, 3515 (1963).
74.K. Wellman, W. Briggs and C. Djerassi, J. Am. Chem. Soc., 87, 73 (1965).
75.C. Djerassi and L. E. Geller, J. Am. Chem. Soc., 81, 2789 (1959).
76.M. J. Robinson, Chem. Ind., 932 (1964).
77.L. Lardicci, P. Salvadori, C. Botteghi and P. Pino, J. Chem. Soc., Chem. Commun., 381 (1968).
78.V. M. Potapov, V. M. Demyanovich and V. P. Zaitsev, Dokl. Akad. Nauk SSSR, 223, 875 (1975).
79.Sh. Ohta, Bull. Chem. Soc. Jpn., 59, 1181 (1986).
80.C. H. Heathcock, C. T. White, J. J. Morrison and D. VanDerveer, J. Org. Chem., 46, 1296 (1981).
81.M. Gacek and K. Undheim, Tetrahedron, 33, 2863 (1977).
82.J. C. Craig, S.-Y. C. Lee and S. K. Roy, J. Org. Chem., 43, 347 (1978).
83.M. Kawai, J. H. Gardner and D. H. Rich, Tetrahedron Lett., 27, 1877 (1986).
84.L. Angiolini, C. Carlini and E. Salatelli, Makromol. Chem., 193, 2883 (1992).
85.L. Angiolini, C. Carlini and E. Salatelli, Polymer, 34, 3778 (1993).
86.S. Bronco, G. Consiglio, R. Hutter, A. Batistini and U. W. Suter, Macromolecules, 27, 4436 (1994).
87.L. A. Gorthey, M. Vairamani and C. Djerassi, J. Org. Chem., 49, 1511 (1984).
88.J. P. Konopelski, P. Sandararaman, G. Barth and C. Djerassi, J. Am. Chem. Soc., 102, 2737 (1980).
89.L. A. Gorthey, M. Vairamani and C. Djerassi, J. Org. Chem., 50, 4173 (1985).
90.S. Colonna, J. Hudec, G. Gottarelli, P. Mariani, G. P. Spada and P. Palmieri, J. Chem. Soc., Perkin Trans. 2, 1327 (1982).
91.M. K. Hargreaves and L. F. Rabari, Monatsh. Chem., 114, 195 (1983).
92.G. V. Grishina, E. L. Gaidarova and A. E. Aliev, Khim. Geterotsikl. Soed., 1369 (1992).
93.G. V. Grishina, V. M. Potapov, S. A. Abdulganeeva and E. Y. Korchagina, Khim. Geterotsikl. Soed., 1648 (1985).
94.G. V. Grishina, N. E. Agafonov and V. M. Potapov, Khim. Geterotsikl. Soed., 519 (1983).
95.J. Boelsterli, U. Eggnauer, E. Pombo-Villar, H.-P. Weber, M. Walkinshaw and R. O. Gould,
Helv. Chim. Acta, 75, 507 (1992).
96.R. K. Hill, G. H. Morton, J. R. Peterson, J. A. Walsh and L. A. Paquette, J. Org. Chem., 50, 5528 (1985).
97.D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 787 (1980).
98.D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 2122 (1977).
99.S. Hagishita and K. Kuriyama, J. Chem. Soc., Perkin Trans. 1, 950 (1980).
100.D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 1810 (1980).
101.B. Alcaide and F. G. Fernandez, An. Quim., 76C, 41 (1980); Chem. Abstr., 95, 6889e (1981).
102.B. Alcaide and F. Fernandez, J. Chem. Soc., Perkin Trans. 1, 1665 (1983).
103.B. Alcaide, M. P. Tarazona and F. Fernandez, J. Chem. Soc., Perkin Trans. 1, 2117 (1982).
104.B. Alcaide and F. Fernandez, J. Chem. Soc., Perkin Trans. 1, 2250 (1981).
105.B. A. Alcaide and F. G. Fernandez, An. Quim., 75, 952 (1979); Chem. Abstr., 93, 7723s (1980).
106.R. J. Capon and J. K. MacLeod, J. Org. Chem., 52, 5059 (1987).
107.A. S. Feliciano, A. F. Barrero, J. M. Del Corral, M. Gordaliza and M. Medarde, Tetrahedron, 41, 671 (1985).
108.T. M. Capps, K. D. Hargrave, P. W. Jeffs and A. T. McPhail, J. Chem. Soc., Perkin Trans. 2, 1098 (1977).
109.M. Adinolfi, L. DeNapoli, B. DiBlasio, A. Iengo, C. Pedone and C. Santacroce, Tetrahedron Lett., 2815 (1977).
110.M. Tori, M. Sono and Y. Asakawa, J. Chem. Soc., Perkin Trans. 1, 2849 (1990).
111.D. Donnelly, S. Sanada, J. O’Reilly, J. Polonsky, T. Prange and C. Pascard, J. Chem. Soc., Chem. Commun., 135 (1982).
