16. Heterogeneous catalytic hydrogenation |
893 |
described in detail461. Lower ee (63%) was observed in the case of the hydrogenation of 2-butanone460. 2-Butanol of 72% optical purity was, however, obtained466 by optimizing the reaction variables (solvent, carboxylic acid as co-modifier, reaction temperature, amount of TA NaBr MRNi, pivalic acid/2-butanone ratio) and modification variables (NaBr/TA ratio, pH, amount of modifying solution). The degree of the intrinsic enantiodifferentiating ability of the adsorbed TA for 2-butanone was supposed to be similar to the ability of TA for higher 2-alkanones.
The enantio-differentiating hydrogenation of 3-octanone467 carried out with TA NaBr MNi catalyst was compared with that of 2-alkanones. Significant differences were observed. For example, the hydrogenation of 3-octanone on a TA NaBr-modified fine nickel powder resulted in a better optical yield (30%) than over a similarly modified Raney nickel. In addition, the hydrogenation at a lower temperature resulted in a lower optical yield in the hydrogenation of 3-octanone, whereas the optical yield was higher in the hydrogenation of 2-alkanones.
The differentiation between methyl and other alkyl groups takes place as follows467. First TA forms an associative complex on the catalyst surface with pivalic acid added to the reaction system462. The substrate is adsorbed to the catalyst surface through TA. The TA pivalic acid complex recognizes the structure of the substrate through an interaction between the alkyl group of pivalic acid and that of 2-alkanones. Finally, hydrogen adds to the substrate from the catalyst surface. This enantio-differentiating model for the hydrogenation of 2-alkanones is given in Figure 1468.
According to this model, the carboxylic acid added to the reaction system is the key factor for achieving the enantio-differentiating hydrogenation of 2-alkanones. Therefore, more detailed comparative studies of the enantio-differentiating hydrogenation of 2- and 3-alkanones, including the structure of the carboxylic acid added to the reaction system, would lead to the development of highly efficient heterogeneous catalysts for the enantiodifferentiating hydrogenation of 3-alkanones. In addition, factors necessary to differentiate between various alkyl groups can be recognized.
Enantioselective heterogeneous catalytic hydrogenation of acetophenone469 471 to (R)- (C)-1-phenylethanol (ee 20%) in the presence of (S)-proline (the chiral auxiliary) was investigated. The effect of various catalytically active metals (Pt, Rh, Raney Ni, Pd), the reaction temperature and the amount of catalyst on the optical purity was studied. The correlation between the optical yield and the conversion, the concentration of the reactants, different pretreatment methods and additives was also investigated469 (equation 49).
C Me + |
|
|
COOH |
|
|
O |
N |
|
|
||
H |
|
|
|
||
|
|
|
|
||
|
H2 |
Pd − C |
|
|
(49) |
|
|
|
|
|
|
|
|
|
Me + |
|
Me |
|
|
CH |
CH |
||
|
|
OH |
|
N |
COOH |
|
|
|
|
|
|
894 |
´ |
Mihaly´ Bartok´ and Arpad´ Moln´ |
Pivalic acid Na+ 

−
(R, R)-Tartaric acid
− |
|
2-Hexanone |
Ni |
H |
H |
|
|
FIGURE 1. Model of asymmetric hydrogenation of 2-alkanones |
C, žžž O, ž H) |
Of the ˛,ˇ-unsaturated ketones only the chiral hydrogenation of isophorone (3,3,5- trimethyl-2-cyclohexen-1-one) was investigated470 473. The effects of catalyst, pH, hydrogen pressure and intensity of agitation on the enantioselective hydrogenation of isophorone were discussed. The changes in chemical and optical yields of the saturated ketone as a function of conversion and the water content of the solvent were also investigated. An iminium salt intermediate (41) undergoing hydrogenation was indentified472 (equation 50). The reaction product was (S)-3,3,5-trimethylcyclohexanone (ee 60%), and an alkylated proline side product was also formed.
O
+
|
COOH |
−OOC |
N |
N |
|||
H |
|
|
+ |
|
|
(41) |
|
|
|
|
(50) |
|
|
H2 |
Pd − C |
|
|
|
|
N |
COOH |
|
O |
|
|
+ |
|
|
|
|
|
|
|
|
|
16. Heterogeneous catalytic hydrogenation |
895 |
Note that there are virtually no data for the asymmetric hydrogenation of the CDC bond over heterogeneous catalysts. The first example474 described the chiral hydrogenation of ˛-phenylcinnamic acid with 15% ee.
The hydrogenation of isophorone and acetophenone in the presence of (S)-proline shows some similarities. The effect of Pd C (S)-proline system is based on the addition reaction of the reactants and (S)-proline in solution and on the chemoselectivity of Pd. Both hydrogenations should be termed diastereoselective rather than enantioselective, since the asymmetric induction takes place in the adduct molecules.
A relatively small number of examples have appeared on the asymmetric hydrogenation of imines, oximes and hydrazones without any other functionality, though the resulting optically active amines are synthetically important compounds. In contrast, many more publications deal with the asymmetric hydrogenation of compounds with CDN bond containing other functional groups. This is mainly due to the importance of ˛-amino acids. On the other hand, the prochiral substrate must be a bifunctional compound possessing a hydrogenation site and a binding site in order to get high enantioselectivity.
There are detailed summaries treating the asymmetric hydrogenation of such bifunctional compounds315,455,475. The present review, consequently, deals only with the asymmetric hydrogenation of compounds in which the CDN bond is the sole functional group.
The chiral hydrogenation of ketimines can be performed either by the hydrogenation of compounds containing a chiral auxiliary group on achiral catalysts, or by hydrogenating achiral ketimines on chiral catalysts. Some examples for diastereoselective hydrogenation of ketimines can be seen in equations 51 53.
|
|
H |
Ph |
|
Me N |
|
|
|
|
|
N |
|
|
|
|
Me |
|
Me |
|
H |
|
|
||
Ph |
Me |
|
|
|
|
|
|
||
(42) |
|
(43) |
|
|
|
|
Raney Ni, H2 |
|
|
|
|
|
|
(51) |
|
|
H |
Ph |
|
|
|
|
|
|
|
|
HN |
Me |
|
|
|
|
|
|
H |
Ph |
|
|
|
NH |
Me |
Me |
|
|
Me
(44)
The formation of chiral, enantio-enriched imines by the utilization of optically active amines, and the subsequent hydrogenation of the diastereotopic imine faces provides a powerful method for the introduction of new stereogenic centers, often with high diastereomeric excesses. New, optically active amines are then obtained by the removal of the chiral auxiliary group475. Thus, the condensation of 2-alkylcyclohexanones with optically active 1-phenylethylamine yielded the mixture of imines 42 and 43 which were hydrogenated over Raney Ni to give essentially only one optically active, diastereomerically
896 |
´ |
Mihaly´ Bartok´ and Arpad´ Molnar´ |
enriched cis secondary amine 44 in good yield476. These results require that an asymmetric interconversion of the diastereomeric imines (42, 43) occurs prior to hydrogenation and that either the diastereomer 43 is greatly favored at equilibrium or that the reduction rate of 43 (or its conformational isomer) is much faster than that of 42. The same method was applied in the transformation of 2-alkylcyclopentanones477.
An |
efficient method |
has been reported478,479 for the |
asymmetric synthesis of |
chiral |
1-arylethylamines. |
The method is the reductive |
amination with optically |
active 1-phenylethylamine of substituted acetophenones via the corresponding imines (equation 52).
H
|
|
|
Raney Ni, H2 |
|
|
|
|
Pd − C |
|
H |
|
Ar |
N |
Ph |
Ar |
N |
Ph |
Ar |
NH2 |
||||
EtOH |
HCOONH4 , MeOH, |
||||||||||
|
|
|
|
|
|
|
|
|
|||
Me |
|
Me |
|
|
Me |
Me |
reflux |
|
Me |
||
|
|
|
|
|
|||||||
(52) Diastereoselective hydrogenation of N-isobornylcamphor imine has also been utilized
to prepare the useful optically active diisobornylamine (equation 53)480.
5% Pt − C, H2 |
H |
(53) |
EtOH |
N |
|
N
H
No new literature data are available for the asymmetric hydrogenation of ketimines without any other functionality.
VIII. REFERENCES
1.D. Parker, in The Chemistry of the Metal Carbon Bond, Vol. 4 (Ed. F. R. Hartley), Chap. 11, Wiley, Chichester, 1987, pp. 979 1047.
´
2. M. Bartok,´ J. Czombos, K. Felfoldi,¨ L. Gera, Gy. Gond¨os,¨ A. Molnar,´ F. Notheisz, I. Palink´o,´
´
Gy. Wittmann and A. G. Zsigmond, Stereochemistry of Heterogeneous Metal Catalysis, Wiley, Chichester, 1985.
3.P. N. Rylander, Catalytic Hydrogenation over Platimum Metals, Chap. 5, Academic Press, New York, 1967, pp. 81 120.
4.P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses, Chap. 3, Academic Press, New York, 1979, pp. 31 63.
5.P. N. Rylander, Hydrogenation Methods, Chap. 2, Academic Press, London, 1985, pp. 29 52.
6.H. Pines, The Chemistry of Catalytic Hydrocarbon Conversions, Chap. 3, Academic Press, New York, 1981, pp. 156 172.
7.R. L. Augustine, in Heterogeneous Catalysis for the Synthetic Chemist, Chap. 15, Marcel Dekker, New York, 1996, pp. 345 386.
8.R. L. Augustine, in Heterogeneous Catalysis for the Synthetic Chemist, Section Two, Marcel Dekker, New York, 1996, pp. 147 312.
9.R. Adams, V. Voorhees and R. L. Shriner, Org. Synth., Coll. Vol., 1, 463 (1941).
10.H. R. Billica and H. Adkins, Org. Synth., Coll. Vol., 3, 176 (1955).
11.P. Fouilloux, Appl. Catal., 8, 1 (1983).
12.C. A. Brown, J. Org. Chem., 35, 1900 (1970).
16. Heterogeneous catalytic hydrogenation |
897 |
13.C. A. Brown and H. C. Brown, J. Am. Chem. Soc., 85, 1003 (1963).
14.H. C. Brown and C. A. Brown, J. Am. Chem. Soc., 85, 1005 (1963).
´
15. A. Molnar,´ G. V. Smith and M. Bartok,´ in Advances in Catalysis, Vol. 36 (Eds. D. D. Eley,
H.Pines and P. B. Weisz), Academic Press, New York, 1989, pp. 329 383.
16.A. Baiker, in Metallic Glasses III (Eds. H. Beck and H.-J. Guntherodt),¨ Springer, Berlin, 1994, pp. 121 162; Faraday Discuss. Chem. Soc., 87, 239 (1989).
17.R. J. Kokes and A. L. Dent, in Advances in Catalysis, Vol. 22 (Eds. D. D. Eley, H. Pines and
P.B. Weisz), Academic Press, New York, 1972, pp. 1 50.
18.W. A. Lazier and H. R. Arnold, Org. Synth., Coll. Vol., 2, 142 (1943).
19. P. C. H. Mitchell, in Catalysis, A Specialist Periodical Report, Vol. 1 (Senior reporter
C.Kemball), Chap. 6, The Chemical Society, Burlington House, London, 1977, pp. 204 233; Vol. 4 (Senior reporters C. Kemball and D. A. Dowden), Chap. 7, The Royal Society of Chemistry, Burlington House, London, 1981, pp. 175 209.
20.C. H. Bartholomew, P. K. Agrawal and J. R. Katzer, in Advances in Catalysis, Vol. 31 (Eds.
D.D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1982, pp. 135 242.
21.J. Barbier, E. Lamy-Pitara, P. Marecot, J. P. Boitiaux, J. Cosyns and F. Verna, in Advances in Catalysis, Vol. 37 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1990, pp. 279 318.
22.P. N. Rylander, Catalytic Hydrogenation over Platinum Metals, Chap. 14 and 15, Academic Press, New York, 1967, pp. 238 290.
23.P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses, Chap. 5 and 6, Academic Press, New York, 1979, pp. 72 112.
24.P. N. Rylander, Hydrogenation Methods, Chap. 4, Academic Press, London, 1985, pp. 66 77.
25.M. Freifelder, Catalytic Hydrogenation in Organic Synthesis. Procedures and Commentary, Chap. 9, Wiley, New York, 1978, pp. 78 89.
26.R. L. Augustine, in Heterogeneous Catalysis for the Synthetic Chemist, Chap. 18, Marcel Dekker, New York, 1996, pp. 439 462.
27. P. N. Rylander, Catalytic Hydrogenation over Platinum Metals, Chap. 6 9, Academic Press, New York, 1967, pp. 123 159.
28.P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses, Chap. 9, Academic Press, New York, 1979, pp. 153 164.
29.P. N. Rylander, Hydrogenation Methods, Chap. 7, Academic Press, London, 1985, pp. 99 103.
30.M. Freifelder, Catalytic Hydrogenation in Organic Synthesis. Procedures and Commentary, Chap. 8, Wiley, New York, 1978, pp. 65 77.
31.R. L. Augustine, in Heterogeneous Catalysis for the Synthetic Chemist, Chap. 19, Marcel Dekker, New York, 1996, pp. 498 510.
32.P. N. Rylander, Hydrogenation Methods, Chap. 1, Academic Press, London, 1985, pp. 17 21.
33.R. L. Augustine, in Heterogeneous Catalysis for the Synthetic Chemist, Chap. 6, Marcel Dekker, New York, 1996, pp. 97 114.
34.E. A. Braude and R. P. Linstead, J. Chem. Soc., 3544 (1954).
35.G. Brieger and T. J. Nestrick, Chem. Rev., 74, 567 (1974).
36.R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chem. Rev., 85, 129 (1985).
37.M. A. Aramendia, V. Borau, C. Jimenez,´ J. M. Marinas, C. Santano and M. E. Sempere, J. Mol. Catal., 72, 221 (1992).
38.M. A. Aramendia, V. Borau, C. Jimenez,´ J. M. Marinas, M. E. Sempere and F. J. Urbano,
React. Kinet. Catal. Lett., 46, 279 (1992).
39.M. A. Aramendia, V. Borau, C. Jimenez,´ J. M. Marinas, A. Porras, F. J. Urbano and L. Villar,
J. Mol. Catal., 94, 131 (1994).
40.H. Hintze and A. Heesing, Chem. Ber., 121, 1133 (1988).
41.R. C. Wade, D. G. Holah, A. N. Hughes and B. C. Hui, Catal. Rev.-Sci. Eng., 14, 211 (1976).
42.R. C. Wade, J. Mol. Catal., 18, 273 (1983).
43.J. Shen, Z. Li, Q. Yan and Y. Chen, J. Phys. Chem., 97, 8504 (1993).
44.J. M. Tour, J. P. Cooper and S. L. Pendalwar, J. Org. Chem., 55, 3452 (1990).
45. W. C. Conner, Jr., G. M. Pajonk and S. J. Teichner, in Advances in Catalysis, Vol. 34 (Eds.
D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1986, pp. 1 79.
46.S. J. Teichner, Appl. Catal., 62, 1 (1990).
47.D. H. Lenz and W. C. Conner, Jr., J. Catal., 104, 288 (1987).
48.R. J. Willey, S. J. Teichner and G. M. Pajonk, J. Mol. Catal., 77, 201 (1992).
898 |
´ |
Mihaly´ Bartok´ and Arpad´ Molnar´ |
49.L. Cerveny and V. Ruzicka, in Advances in Catalysis, Vol. 30 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1981, pp. 335 377.
50.L. Cerveny and V. Ruzicka, Catal. Rev.-Sci. Eng., 24, 503 (1982).
51.L. Cerveny and V. Ruzicka, React. Kinet. Catal. Lett., 17, 161 (1981).
52.P. G. J. Koopman, H. M. A. Buurmans, A. P. G. Kieboom and H. van Bekkum, Recl. Trav. Chim. Pays-Bas, 100, 156 (1981).
53.R. L. Augustine, V. Nocito, J. Van Pappen, R. Warner and F. Yaghmaie, in Catalysis of Organic Syntheses (Ed. W. H. Jones), Academic Press, New York, 1980, pp. 173 184.
54.R. L. Augustine and P. Techasauvapak, J. Mol. Catal., 87, 95 (1994).
55.R. L. Augustine, R. W. Warner and M. J. Melnick, J. Org. Chem., 49, 4853 (1984).
56.N. Ravasio, M. Antenori, M. Gargano and M. Rossi, J. Mol. Catal., 74, 267 (1992).
57.P. Sabatier and J. B. Senderens, Compt. Rend., 124, 616, 1358 (1897); 131, 267 (1900).
58.R. L. Burwell, Jr., Chem. Rev., 57, 895 (1957).
59. G. C. Bond, Catalysis by Metals, Chap. 11 and 12, Academic Press, London, 1962, pp. 229 309.
60.G. C. Bond and P. B. Wells, in Advances in Catalysis, Vol. 15 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1964, pp. 91 226.
61.R. L. Augustine, Catalytic Hydrogenation: Techniques and Applications in Organic Synthesis, Chap. 4, Marcel Dekker, New York, 1965, pp. 57 69.
62.S. Siegel, in Advances in Catalysis, Vol. 16 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1966, pp. 123 177.
63.S. Siegel, in Comprehensive Organic Synthesis (Eds. B. M. Trost and I. Fleming), Vol. 8: Reduction (Ed. I. Fleming), Chap. 3.1, Pergamon Press, Oxford, pp. 417 442.
64.S. Mitsui and A. Kasahara, in The Chemistry of Alkenes, Vol. 2 (Ed. J. Zabicky), Chap. 4, WileyInterscience, London, 1970, pp. 175 214.
65.A. P. G. Kieboom and F. van Rantwijk, Hydrogenation and Hydrogenolysis in Synthetic Organic Chemistry, Chap. II.2, Delft University Press, Delft, 1977, pp. 34 52.
66.M. Freifelder, Catalytic Hydrogenation in Organic Synthesis. Procedures and Commentary,
Chap. 4, Wiley, New York, 1978, pp. 15 25.
´
67. M. Bartok´ and A. Molnar,´ in Stereochemistry of Heterogeneous Metal Catalysis, Chap. 3, Wiley, Chichester, 1985, pp. 53 210.
68. S. V. Lebedev, G. G. Kobliansky and A. O. Yakubchik, J. Chem. Soc., 417 (1925).
69. M. Kraus, in Advances in Catalysis, Vol. 29 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1980, pp. 151 196.
70. C. A. Brown and V. K. Ahuja, J. Org. Chem., 38, 2226 (1973).
71. J. M. Campelo, A. Garcia, D. Luna and J. M. Marinas, Appl. Catal., 10, 1 (1984). 72. W. F. Maier and F. A. Etzkorn, Z. Naturforsch., B: Chem. Sci., 47, 175 (1992).
´
73. A. Molnar,´ G. Sirokman´ and M. Bartok,´ in Catalysis of Organic Reactions (Eds. P. N. Rylander, H. Greenfield and R. L. Augustine), Marcel Dekker, New York, 1988, pp. 279 306.
74. J. A. Cabello, J. M. Campelo, A. Garcia, D. Luna and J. M. Marinas, J. Mol. Catal., 78, 249 (1993).
75. W. M. H. Sachtler, Acc. Chem. Res., 26, 383 (1993).
76. W. M. H. Sachtler and Z. Zhang, in Advances in Catalysis, Vol. 39 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1993, pp. 129 220.
77. P. B. Weisz, V. J. Frilette, R. W. Maatman and E. B. Mower, J. Catal., 1, 307 (1962).
78. H. Kuno, M. Shibagaki, K. Takahashi, I. Honda and H. Matsushita, Bull. Chem. Soc. Jpn., 64, 2508 (1991).
79. H. Kuno, M. Shibagaki, K. Takahashi, I. Honda and H. Matsushita, in Studies in Surface Science and Catalysis, Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993, pp. 1727 1730.
80. H. Kuno, M. Shibagaki, K. Takahashi, I. Honda and H. Matsushita, Bull. Chem. Soc. Jpn., 65, 1240 (1992).
81. R. M. Dessau, J. Catal., 77, 304 (1982).
82. R. M. Dessau, J. Catal., 89, 520 (1984).
83. S. Shimazu, T. Hirano and T. Uematsu, Appl. Catal., 34, 255 (1987).
84. M. Crocker, R. H. M. Herold, J. G. Buglass and P. Companje, J. Catal., 141, 700 (1993). 85. J. Horiuti, G. Ogden and M. Polanyi, Trans. Faraday Soc., 30, 663 (1934).
86. J. Horiuti and M. Polanyi, Trans. Faraday Soc., 30, 1164 (1934). 87. I. Langmuir, Trans. Faraday Soc., 17, 621 (1922).
16. Heterogeneous catalytic hydrogenation |
899 |
88.D. D. Eley, Chem. Ind., 12 (1976).
89.E. K. Rideal, Concepts in Catalysis, Academic Press, San Diego, 1968.
90.A. V. Teplyakov and B. E. Bent, J. Chem. Soc., Faraday Trans., 91, 3645 (1995).
91.M. Xi and B. Bent, J. Vac. Sci. Technol. B, 10, 2440 (1992).
92.J. Halpern, Inorg. Chim. Acta, 50, 11 (1981).
93.J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, 2nd ed., Chap. 10, University of Science, Mill Valley, 1987.
94.C. Daniel, N. Koga, J. Han, X. Y. Fu and K. Morokuma, J. Am. Chem. Soc., 110, 3773 (1988).
95.A. S. C. Chan and J. Halpern, J. Am. Chem. Soc., 102, 838 (1980).
96.M. L. Burke and R. J. Madix, J. Am. Chem. Soc., 113, 4151 (1991).
97.X.-C. Guo and R. J. Madix, J. Catal., 155, 336 (1995).
98.F. Zaera, J. Catal., 121, 318 (1990).
99.F. Zaera, J. Phys. Chem., 94, 5090 (1990).
100.T. M. Gentle and E. L. Muetterties, J. Phys. Chem., 87, 2469 (1983).
101.M. J. Hostetler, R. G. Nuzzo and G. S. Girolami, J. Am. Chem. Soc., 117, 1814 (1995).
102.W. F. Maier, Angew. Chem., Int. Ed. Engl., 28, 135 (1989).
103.A. Farkas and L. Farkas, Trans. Faraday Soc., 33, 678, 827 (1937).
104.A. Farkas, Trans. Faraday Soc., 35, 906 (1939).
105.C. Horrex, R. K. Greenhalgh and M. Polanyi, Trans. Faraday Soc., 35, 511, 520 (1939).
106.M. Bartok´ and I. Palink´o,´ in Stereochemistry of Heterogeneous Metal Catalysis, Chap. 1, Wiley,
Chichester, 1985, pp. 3 4.
´
107. M. Bartok´ and A. G. Zsigmond, in Stereochemistry of Heterogeneous Metal Catalysis, Chap. 2, Wiley, Chichester, 1985, pp. 24 27.
108. J. C. Bertolini and J. Massardier, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 3B: Chemisorption Systems (Eds. D. A. King and D. P. Woodruff), Chap. 3, Elsevier, Amsterdam, 1984, pp. 107 136.
109. N. Sheppard, Ann. Rev. Phys. Chem., 39, 589 (1988).
110. G. Shahid and N. Sheppard, J. Chem. Soc., Faraday Trans., 90, 507, 513 (1994).
111. M. Bowker, J. L. Gland, R. W. Joyner, Y. Li, M. M. Slin’ko and R. Whyman, Catal. Lett., 25, 293 (1994).
112. F. Zaera, Chem. Rev., 95, 2651 (1995).
113. T. J. Campione and J. G. Ekerdt, J. Catal., 102, 64 (1986).
114. K. G. Anderson and J. G. Ekerdt, J. Catal., 116, 556 (1989).
115. S. P. Daley, A. L. Utz, T. R. Trautman and S. T. Ceyer, J. Am Chem. Soc., 116, 6001 (1994). 116. M. Matsuyama, K. Ashida, O. Takayasu and T. Takeuchi, J. Catal., 102, 309 (1986).
117. K.-A. Son, M. Mavrikakis and J. L. Gland, J. Phys. Chem., 99, 6270 (1995).
118. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, Chap. 7, Wiley, New York, 1994, pp. 507 509.
119. P. S. Cremer and G. A. Somorjai, J. Chem. Soc., Faraday Trans., 91, 3671 (1995). 120. F. Zaera and G. A. Somorjai, J. Am. Chem. Soc., 106, 2288 (1984).
121. F. Zaera, A. J. Gellman and G. A. Somorjai, Acc. Chem. Res., 19, 24 (1986). 122. G. A. Somorjai, M. A. Van Hove and B. E. Bent, J. Phys. Chem., 92, 973 (1988).
123. M. A. Chesters, C. De La Cruz, P. Gardner, E. M. McCash, P. Pudney, G. Shahid and
N. Sheppard, J. Chem. Soc., Faraday Trans., 86, 2757 (1990).
124.T. P. Beebe, Jr. and J. T. Yates, Jr., J. Phys. Chem., 91, 254 (1987).
125.M. P. Lapinski and J. G. Ekerdt, J. Phys. Chem., 96, 5069 (1992).
126.A. B. Anderson and S. J. Choe, J. Phys. Chem., 93, 6145 (1989).
127.D. Goodbey, F. Zaera, R. Yeates and G. A. Somorjai, Surf. Sci., 167, 150 (1986).
128.M. L. Burke and R. J. Madix, J. Am. Chem. Soc., 113, 3675 (1991).
129.S. J. Thomson and G. Webb, J. Chem. Soc., Chem. Commun., 526 (1976).
130. A. F. Carley, H. A. Edwards, B. Mile, M. W. Roberts, C. C. Rowlands, F. E. Hancock and
S. D. Jackson, J. Chem. Soc., Faraday Trans., 90, 3341 (1994).
131.W. Hassel, H. L. Gunter¨ and M. Henzler, Surf. Sci., 126, 479 (1983).
132.D. G. Kelly, M. Salmeron and G. A. Somorjai, Surf. Sci., 175, 465 (1986).
133.D. G. Kelly, J. A. Odriozola and G. A. Somorjai, J. Phys. Chem., 91, 5695 (1987).
134.M. Nishijima, T. Sekitani, T. Takaoka and M. Fujisawa, J. Mol. Catal., 74, 163 (1992).
135.M. Boudart, in Advances in Catalysis, Vol. 20 (Eds. D. D. Eley, H. Pines and P. B. Weisz), Academic Press, New York, 1969, pp. 153 166.
900 |
´ |
Mihaly´ Bartok´ and Arpad´ Molnar´ |
136.M. Boudart, J. Mol. Catal., 30, 27 (1985).
137.G. A. Somorjai, B. E. Koel and B. E. Bent, Surf. Sci., 146, 211 (1984).
138.E. Rorris, J. B. Butt, R. L. Burwell, Jr. and J. B. Cohen, in Proc. 8th Int. Congr. Catal., Vol. IV, Verlag Chemie, Dechema, Weinheim, 1984, pp. 321 331.
139.M. Boudart and C. M. McConica, J. Catal., 117, 33 (1989).
140.J. Sepulveda´ and N. F´ıgoli, React. Kinet. Catal. Lett., 53, 155 (1994).
141.A. A. Andreev, M. N. Vassileva, K. K. Tenchev, D. M. Shopov and G. A. Savelieva, React. Kinet. Catal. Lett., 23, 381 (1983).
142.G. A. Somorjai, Catal. Lett., 7, 169 (1990); 12, 17 (1992).
143.J. J. Rooney, J. Mol. Catal., 31, 147 (1985).
144.F. von Wessely and H. Welleba, Chem. Ber., 74, 777 (1941).
145.F. M. Bautista, J. M. Campelo, A. Garcia, R. Guardeno, D. Luna and J. M. Marinas, J. Chem. Soc., Perkin Trans. 2, 493 (1989).
146.S. Siegel and G. V. Smith, J. Am. Chem. Soc., 82, 6082, 6087 (1960).
147.S. Siegel and B. Dmuchovsky, J. Am. Chem. Soc., 86, 2192 (1964).
148.S. Nishimura, F. Mochizuki and S. Kobayakawa, Bull. Chem. Soc. Jpn., 43, 1919 (1970).
149.S. Siegel and B. Dmuchovsky, J. Am. Chem. Soc., 84, 3132 (1962).
150.R. L. Augustine, F. Yaghmaie and J. F. Van Pappen, J. Org. Chem., 49, 1865 (1984).
151.R. L. Augustine and S. K. Tanielyan, J. Mol. Catal., 80, 277 (1993).
152.S. Imaizumi, H. Murayama, J. Ishiyama and Y. Senda, Bull. Chem. Soc. Jpn., 58, 1071 (1985).
153.S. Mitsui, S. Imaizumi, A. Nanbu and Y. Senda, J. Catal., 36, 333 (1975).
154.A. S. Hussey, T. A. Schenach and R. H. Baker, J. Org. Chem., 33, 3258 (1968).
155.R. L. Augustine and F. Yaghmaie, J. Org. Chem., 52, 1862 (1987).
156.R. L. Augustine and H. P. Beutelman, J. Catal., 97, 59 (1986).
157.A. H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev., 93, 1307 (1993).
158.K. J. Klabunde and Y. Tanaka, J. Mol. Catal., 21, 57 (1983).
159.J. S. Bradley, E. Hill, M. E. Leonowicz and H. Witzke, J. Mol. Catal., 41, 59 (1987).
160.H. Hirai and M. Komiyama, Yuki Gosei Kagaku Kyokaishi, 42, 32 (1984), Chem. Abstr., 100, 173897j (1984).
161.H. Imamura, A. Ohmura, E. Haku and S. Tsuchiya, J. Catal., 96, 139 (1985).
162.M. Ohtaki, N. Toshima, M. Komiyama and H. Hirai, Bull. Chem. Soc. Jpn., 63, 1433 (1990).
163.M. Boutonnet, J. Kizling, R. Touroude, G. Maire and P. Stenius, Appl. Catal., 20, 163 (1986).
164.S.-M. Huang and B.-L. He, React. Polym., 23, 11 (1994).
165.M. Ohtaki, M. Komiyama, H. Hirai and N. Toshima, Macromolecules, 24, 5567 (1991).
166.D. G. Duff, T. Mallat, M. Schneider and A. Baiker, Appl. Catal. A, 133, 133 (1995).
167.M. Schneider, D. G. Duff, T. Mallat,´ M. Wildberger and A. Baiker, J. Catal., 147, 500 (1995).
168.G. Carturan, S. Enzo, R. Ganzerla, M. Lenarda and R. Zanoni, J. Chem. Soc., Faraday Trans., 86, 739 (1990).
169.P. Mauret and P. Alphonse, J. Org. Chem., 47, 3322 (1982).
170. M. E. Vol’pin, |
Yu. N. Novikov, N. D. Lapkina, V. I. Kasatochkin, Yu. T. Struchkov, |
M. E. Kazakov, |
R. A. Stukan, V. A. Povitskij, Yu. S. Karimov and A. V. Zvarikina, J. Am. |
Chem. Soc., 97, 3366 (1975).
´´
171.G. Sirokman,´ A. Mastalir, A. Molnar,´ M. Bartok,´ Z. Schay and L. Guczi, J. Catal., 117, 558 (1989).
´´
172.G. Sirokman,´ A. Mastalir, A. Molnar,´ M. Bartok,´ Z. Schay and L. Guczi, Carbon, 28, 35 (1990).
´
173. F. Notheisz, A. Mastalir and M. Bartok,´ J. Catal., 134, 608 (1992).
´
174. A. Mastalir, F. Notheisz and M. Bartok,´ Catal. Lett., 35, 119 (1995).
´
175. A. Mastalir, F. Notheisz, M. Bartok,´ Z. Kiraly´ and I. Dek´any,´ J. Mol. Catal., 99, 115 (1995).
´
176. A. Mastalir, F. Notheisz, J. Ocsko´ and M. Bartok,´ React. Kinet. Catal. Lett., 56, 69 (1995). 177. K. Aika, T. Yamaguchi and T. Onishi, Appl. Catal., 23, 129 (1986).
178. J. A. Schreifels, P. C. Maybury and W. E. Swartz, Jr., J. Org. Chem., 46, 1263 (1981).
179. D. Rosier, J.-L. Dallons, G. Jannes and J.-P. Puttemans, Acta Chim. Acad. Sci. Hung., 124, 57 (1987).
180. G. Jannes, J.-P. Puttemans and P. Vanderwegen, Catal. Today, 5, 265 (1989). 181. Y. Z. Chen and K. J. Wu, Appl. Catal., 78, 185 (1991).
182. G. Jannes, P. Kerckx, B. Lenoble, P. Vanderwegen, C. Verlinden and J. P. Puttemans, in Studies in Surface Science and Catalysis, Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993, pp. 2349 2352.
16. Heterogeneous catalytic hydrogenation |
901 |
183.Y. Nakao and S. Fujishige, Bull. Chem. Soc. Jpn., 53, 1267 (1980).
184.Y. Nakao and S. Fujishige, J. Catal., 68, 406 (1981).
185.Y. Fan, Z. Hu, J. Shen, Q. Yan and Y. Chen, J. Mat. Sci. Lett., 12, 596 (1993).
186.J. Shen, Z. Li, Q. Zhang, Y. Chen, Q. Bao and Z. Li, in Studies in Surface Science and Catalysis,
Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993, pp. 2193 2196.
187.D. Jingfa, Z. Xiping and M. Enze, Appl. Catal., 37, 339 (1988).
188.S.-H. Ko and T.-C. Chou, Can. J. Chem. Eng., 72, 862 (1994).
189.A. Krasuska, W. Szelejewski, J. Guberska and J. Flakiewicz, Pol. Pat. 127,559 (1986); Chem. Abstr., 108, 221918f (1988).
190.K. Klement, Jr., R. H. Willens and P. Duwez, Nature (London), 187, 869 (1960).
191.P. Duwez, Trans. Am. Soc. Met., 60, 607 (1967).
192.G. V. Smith, W. E. Brower, Jr., M. S. Matyjaszczyk and T. L. Pettit, in Studies in Surface Science and Catalysis, Vol. 7A (Eds. T. Seiyama and K. Tanabe), Kodansha, Tokyo, Elsevier, Amsterdam, 1981, pp. 355 363.
193.W. E. Brower, Jr., M. S. Matyjaszczyk, T. L. Pettit and G. V. Smith, Nature (London), 301, 497 (1983).
194.G. V. Smith, O. Zahraa, A. Molnar, M. M. Khan, B. Rihter and W. E. Brower, Jr., J. Catal., 83,
238 (1983).
´
195. A. Molnar,´ G. V. Smith and M. Bartok,´ J. Catal., 101, 540 (1986).
´
196. G. V. Smith, A. Molnar,´ M. M. Khan, D. Ostgard and N. Yoshida, J. Catal., 98, 502 (1986). 197. A. Baiker, H. Baris and H. J. Guntherodt, Appl. Catal., 22, 389 (1986).
198. H. Yamashita, M. Yoshikawa, T. Kaminade, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 1, 82, 707 (1986).
199. H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 1, 83, 2883 (1987).
200. S. Yoshida, H. Yamashita, T. Funabiki and T. Yonezawa, J. Chem. Soc., Chem. Commun., 964 (1982); J. Chem. Soc., Faraday Trans. 1, 80, 1435 (1984).
201. H. Yamashita, M. Yoshikawa, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 1, 82, 1771 (1986).
202. H. Yamashita, T. Funabiki and S. Yoshida, J. Chem. Soc., Chem. Commun., 868 (1984). 203. H. Yamashita, T. Kaminade, T. Funabiki and S. Yoshida, J. Mat. Sci. Lett., 4, 1241 (1985).
204. B. C. Giessen, S. S. Mahmoud, D. A. Forsyth and M. Hediger, Mater. Res. Soc. Symp. Proc., 8, 255 (1982).
205. S. S. Mahmoud, D. A. Forsyth and B. C. Giessen, Mater. Res. Soc. Symp. Proc., 58, 131 (1986). 206. S. S. Mahmoud and B. C. Giessen, Bull. Chem. Soc. Jpn., 66, 1012 (1993).
207. T. Takahashi, Y. Nishi, N. Otsuji, T. Kai, T. Masumoto and H. Kimura, Can. J. Chem. Eng., 65, 274 (1987).
´
208. A. Molnar,´ I. Bucsi, M. Bartok,´ F. Notheisz and G. V. Smith, J. Catal., 98, 386 (1986).
´
209. A. Molnar,´ J. T. Kiss, I Bucsi, T. Katona and M. Bartok,´ J. Mol. Catal., 61, 307 (1990).
210. S. Tjandra, D. Ostgard, G. V. Smith, M. Musoiu, T. Wiltowski, F. Notheisz, M. Bartok´ and
J.Stoch, in Catalysis of Organic Reactions (Ed. W. E. Pascoe), Marcel Dekker, New York, 1992, pp. 137 141.
211.J. P. Boitiaux, J. Cosyns and F. Verna, in Studies in Surface Science and Catalysis, Vol. 34 (Eds.
B.Delmon and G. F. Froment), Elsevier, Amsterdam, 1987, pp. 105 123.
212.I. Palink´o,´ Appl. Catal. A, 126, 39 (1995).
213.J. Kondo, K. Domen and T. Onishi, Res. Chem. Intermed., 19, 521 (1993).
214.J. Kondo, K. Domen, K. Maruya and T. Onishi, J. Chem. Soc., Faraday Trans., 86, 3021 (1990).
215.S. Naito, M. Tanimoto, M. Soma and Y. Udagawa, in Studies in Surface Science and Catalysis,
Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993, pp. 2043 2046.
216.S. Naito and M. Tanimoto, Bull. Chem. Soc. Jpn., 67, 3205 (1994); J. Catal., 154, 306 (1995).
217.J. Yasumaru, M. Yamada, M. Houalla and D. M. Hercules, in Studies in Surface Science and
Catalysis, Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993,
pp. 1867 1870.
218.K. Ichimura, Y. Inoue and I. Yasumori, Catal. Rev. -Sci. Eng., 34, 301 (1992).
219.K. Ichimura, Y. Inoue and I. Yasumori, Bull. Chem. Soc. Jpn., 53, 3044 (1980).
220.S. Kodama and S. Yagi, J. Chem. Soc., Faraday Trans., 88, 1685 (1992).
221.M. Anpo, N. Aikawa, S. Kodama and Y. Kubokawa, J. Phys. Chem., 88, 2569 (1984).
222.M. Anpo, T. Kawamura, S. Kodama, K. Maruya and T. Onishi, J. Phys. Chem., 92, 438 (1988).
902 |
´ |
Mihaly´ Bartok´ and Arpad´ Molnar´ |
223.M. Anpo, N. Aikawa and Y. Kubokawa, J. Phys. Chem., 88, 3998 (1984).
224.R. Baba, S. Nakabayashi, A. Fujishima and K. Honda, J. Am. Chem. Soc., 109, 2273 (1987).
225.M. L. Ledoux, New J. Chem., 2, 9 (1978).
226.S. Siegel, J. Outlaw, Jr. and N. Garti, J. Catal., 52, 102 (1978).
227.R. L. Augustine and P. J. O’Hagan, in Catalysis of Organic Reactions (Ed. D. W. Blackburn), Marcel Dekker, New York, 1990, pp. 111 136.
228.R. L. Augustine and R. W. Warner, J. Catal., 80, 358 (1983).
229.R. L. Augustine and R. W. Warner, J. Org. Chem., 46, 2614 (1981).
230.R. L. Augustine, D. R. Baum, K. G. High, L. S. Szivos and S. T. O’Leary, J. Catal., 127, 675 (1991).
231.R. L. Augustine and M. M. Thompson, J. Org. Chem., 52, 1911 (1987).
232.R. L. Augustine, K. P. Kelly and Y.-M. Lay, Appl. Catal., 19, 87 (1985).
233.R. L. Augustine and K. P. Kelly, J. Chem. Soc., Faraday Trans. 1, 82, 3025 (1986).
234.F. Notheisz, M. Bartok,´ D. Ostgard and G. V. Smith, J. Catal., 101, 212 (1986).
235. |
G. V. Smith, D. Ostgard, M. Bartok´ and F. Notheisz, in Catalysis of Organic Reactions |
||||||
|
(Eds. P. N. Rylander, H. Greenfield and R. L. Augustine), Marcel Dekker, New York, 1988, |
||||||
|
pp. 409 |
|
418. |
|
|
|
|
|
|
||||||
236. |
´ |
|
|
|
|
||
G. V. Smith, D. J. Ostgard, F. Notheisz, A. G. Zsigmond, I. Palink´o´ and M. Bartok,´ in Catalysis |
|||||||
|
of Organic Reactions (Ed. D. W. Blackburn), Marcel Dekker, New York, 1990, pp. 157 |
|
165. |
||||
|
|
||||||
237. |
´ |
|
|
|
|
||
F. Notheisz, A. Zsigmond, M. Bartok,´ Zs. Szegletes and G. V. Smith, Appl. Catal. A, 120, 105 |
|||||||
|
(1994). |
|
|
|
|
|
|
238. |
P. Sautet and J.-F. Paul, Catal. Lett., 9, 245 (1991). |
||||||
239. |
E. F. Meyer and R. L. Burwell, Jr., J. Am. Chem. Soc., 85, 2881 (1963). |
||||||
240. |
J. J. Phillipson, P. B. Wells and G. R. Wilson, J. Chem. Soc. A, 1351 (1969). |
||||||
241. |
A. J. Bates, Z. K. Leszczynski, J. J. Phillipson, P. B. Wells and G. R. Wilson, J. Chem. Soc. A, |
||||||
|
2435 (1970). |
|
|
|
|
||
242. |
D. A. Buchanan and G. Webb, J. Chem. Soc., Faraday Trans. 1, 71, 134 (1975). |
||||||
243. |
B. J. Joice, J. J. Rooney, P. B. Wells and G. R. Wilson, Discuss Faraday Soc., 41, 223 (1966). |
||||||
244. |
T. Ouchaib, J. Massardier and A. Renouprez, J. Catal., 119, 517 (1989). |
||||||
245. |
A. J. Renouprez, in NATO ASI Ser., Ser. C, Metal-Ligand Interactions, 378, 125 (1992). |
||||||
246. |
M. Che and C. O. Bennett, in Advances in Catalysis, Vol. 36 (Eds. D. D. Eley, H. Pines and |
||||||
|
P. B. Weisz), Academic Press, New York, 1989, pp. 55 |
|
172. |
||||
|
|
||||||
247. |
B. Tardy, C. Noupa, C. Leclercq, J. C. Bertolini, A. Hoareau, M. Treilleux, J. P. Faure and |
||||||
G. Nihoul, J. Catal., 129, 1 (1991).
248.J. P. Boitiaux, J. Cosyns and S. Vasudevan, Appl. Catal., 6, 41 (1983).
249.J. P. Boitiaux, J. Cosyns and E. Robert, Appl. Catal., 32, 145 (1987).
250.J. P. Boitiaux, J. Cosyns and E. Robert, Appl. Catal., 32, 169 (1987).
251.J. P. Boitiaux, J. Cosyns and E. Robert, Appl. Catal., 49, 235 (1989).
252.J. P. Boitiaux, J. Cosyns and S. Vasudevan, Appl. Catal., 15, 317 (1985).
253.J. P. Boitiaux, J. Cosyns and E. Robert, Appl. Catal., 49, 219 (1989).
254.B. K. Furlong, J. W. Hightower, T. Y.-L. Chan, A. Sarkany and L. Guczi, Appl. Catal. A, 117, 41 (1994).
255.J. W. Hightower, B. Furlong, A. Sark´any´ and L. Guczi, in Studies in Surface Science and
Catalysis, Vol. 75 (Eds. L. Guczi, F. Solymosi and P. Tet´enyi),´ Elsevier, Amsterdam, 1993,
pp. 2305 2308.
256.C. Fragale, M. Gargano, N. Ravasio, M. Rossi and I. Santo, J. Mol. Catal., 24, 211 (1984).
257.H. R. Aduriz, P. Bodnariuk, B. Coq and F. Figueras, J. Catal., 129, 47 (1991).
258.L. Cerveny, I. Paseka, K. Surma, N. T. Thanh and V. Ruzicka, Collect Czech. Chem. Soc., 50, 61 (1985).
259.A. Borgna, B. Moraweck, J. Massardier and A. J. Renouprez, J. Catal., 128, 99 (1991).
260.A. Sark´any,´ Z. Zsoldos, Gy. Stefler, J. W. Hightower and L. Guczi, J. Catal., 157, 179 (1995).
261.P. Miegge, J. L. Rousset, B. Tardy, J. Massardier and J. C. Bertolini, J. Catal., 149, 404 (1994).
262.R. de Souza Monteiro, F. B. Noronha, L. C. Dieguez and M. Schmal, Appl. Catal. A, 131, 89 (1995).
263.A. Baiker, H. Baris and H. J. Guntherodt,¨ J. Chem. Soc., Chem. Commun., 930 (1986).
264.A. Baiker, H. Baris, M. Erbudak and F. Vanini, in Catalysis: Theory and Practice, Proc. 9th Int. Congr. Catal., Vol. 4 (Eds. M. J. Phillips and M. Ternan), The Chemical Institute of Canada, Ottawa, 1988, pp. 1928 1935.
