- •1.2. Закон Кулона
- •1.3. Напряженность электрического поля
- •1.4. Электрическое поле точечного заряда
- •1.5. Принцип суперпозиции для электрического поля
- •1.6. Силовые линии электрического поля
- •1.7. Поток вектора напряженности электрического поля. Теорема Гаусса
- •1.8. Работа и энергия электрического поля
- •1.9. Потенциал электрического поля
- •1.10. Связь между напряженностью и потенциалом электрического поля
- •1.11. Проводники в электрическом поле
- •1.12. Диэлектрики в электрическом поле
- •1.13. Электрическая емкость уединенного проводника
- •1.14. Конденсаторы электрической энергии
- •1.15. Энергия электрического поля заряженного проводника и конденсатора
- •Глава 2. Постоянный ток.
- •2.1. Электрический ток
- •2.2. Закон Ома. Сопротивление и электропроводность проводника
- •2.3.Работа и мощность постоянного тока. Электрические цепи постоянного тока.
- •2.4. Цепи постоянного тока.
- •Глава 3. Электромагнетизм
- •3.1. Магнитное поле
- •3.2. Линии индукции магнитного поля
- •3.3. Закон Био-Савара – Лапласа
- •3.4. Магнитное поле прямолинейного проводника
- •3.5. Магнитное поле на оси кольца с током
- •3.6. Магнитное поле на оси соленоида конечной длины
- •3.7. Циркуляция вектора индукции магнитного поля. Закон полного тока
- •3.8. Магнитное поле длинного соленоида
- •3.9. Магнитное поле стержня с током
- •3.10. Сила Лоренца
- •3.11. Закон Ампера
- •3.12. Магнитное взаимодействие параллельных проводников с током
- •3.13. Движение заряженных частиц в магнитном поле
- •3.14. Магнитный поток.
- •3.15. Работа сил магнитного поля
- •3.16. Магнитное поле в веществе
- •3.17. Напряженность магнитного поля
- •3.18. Магнитные свойства веществ
- •Глава 4.Электромагнитная индукция.
- •4.1.Движение линейных проводников в магнитном поле.
- •4.2.Замкнутые контуры проводников в магнитном поле
- •4.3. Самоиндукция, взаимоиндукция, индуктивность.
- •4.4. Генератор переменного тока
- •4.5. Электродвигатель
- •4.6. Трансформатор.
- •Лекция 11
- •Глава 5. Переменный ток
- •5.1 Цепи переменного тока
- •5.2 Индуктивное сопротивление
- •5.3. Емкостное сопротивление
- •5.4 Полное сопротивление
- •5.5. Мощность переменного тока
- •5.6. Резонанс в цепи переменного тока
- •5.7.Переходные процессы в цепях с реактивным сопротивлением
- •5.8. Электромагнитное поле
- •Глава 6. Электромагнитные колебания и волны.
- •6.1.Колебательный контур.
- •6.2. Уравнение электромагнитных колебаний
- •6.3. Свободные электромагнитные колебания
- •6.4. Вынужденные электромагнитные колебания, резонанс.
- •Экзаменационные вопросы
1.13. Электрическая емкость уединенного проводника
При электризации проводника сообщенный ему заряд q будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю
(проводника =0).
Сообщенный проводнику избыточный заряд вследствие взаимного отталкивания распределяется по поверхности проводника. Это распределение зависит от формы проводника и образует внутри проводника поле с нулевой напряженностью и всюду одинаковым потенциалом.
Потенциал проводника в виде шара радиусом R
. (1.35)
Коэффициент пропорциональности зависит от геометрии проводника. Произведениеназывается электроемкостью и обозначается
(1.36)
электроемкость численно равна величине заряда, который нужно сообщить данному проводнику, чтобы повысить его потенциал на единицу.
В системе СИ за единицу электроемкости принимают емкость такого проводника, при сообщении которому заряда 1КЛ его потенциал изменяется на 1В. Эта единица называется фарадой. Так как фарада представляет собой большую единицу, то в практике используют единицы, кратные фараде:
1мкФ = 10-6 Ф – микрофарада
1пФ= 10-12 Ф – пикофарада
Электроемкость уединенного проводника зависит от его геометрических размеров, формы и диэлектрических свойств окружающей среды.
1.14. Конденсаторы электрической энергии
Электроемкость Земли по формуле С з = 700 мкФ. Емкостью в 1 Ф обладал бы уединенный шар радиусом в 1500 раз превышающим радиус Земли. В практике необходимы накопители заряда малых размеров с электроемкостью порядка микрофарад и фарад.
Такими накопителями заряда являются конденсаторы. Конденсатор состоит из двух проводников (обкладок), разделенных прослойкой диэлектрика (рис. 1.15).
Рис.1.15
Приближая вторую обкладку к первой и помещая между ними вещество с высокой диэлектрической проницаемостью , можно создать конденсаторы большой емкости и накапливать заряды при незначительной разности потенциалов. Практически очень важно, что электрическое поле конденсатора сосредотачивается почти целиком в узком зазоре между его обкладками, так что его электроемкость не зависит от наличия других проводников и диэлектриков вблизи конденсатора.
При приложении к конденсатору некоторой разности потенциалов его обкладки заряжаются равными по величине зарядами q, но противоположными по знаку. Под электроемкостью конденсатора Ск понимается отношение заряда одной из его обкладок g к разности потенциалов между обкладками:
В плоском конденсаторе поле между пластинами площадью площадью S практически однородно, а его напряженность
, (1.37)
Известно также, что
. (1.38)
Сравнивая два последних соотношения, получим:
.
И электроемкость плоского конденсатора:
. (1.39)
Увеличивать электроемкость плоского конденсатора можно, уменьшая расстояние между пластинами, что ведет к возрастанию напряженности электрического поля в диэлектрической прослойке. В очень сильных полях (порядка 107 В/м) возникает пробой диэлектрика и конденсатор разрушается. Для предотвращения пробоя расстояние между пластинами при выбранном диэлектрике не следует делать меньше некоторого минимального значения , а при расстоянии между пластинами к конденсатору нельзя прикладывать разность потенциалов, превышающую некоторое максимальное значение.
Для накопления энергии используют параллельное соединение конденсаторов в батареи (рис. 1.16 а).
а) б)
Рис.1.16
При параллельном соединении электроемкость батареи равна сумме емкостей включенных в нее конденсаторов.
.
Для предотвращения пробоя прибегают к последовательному соединению конденсаторов (рис.1.15.б)
где суммарная электроемкость такого соединения определяется из соотношения:
и всегда будет меньше электроемкости каждого из конденсаторов.