
- •1.История развития эконометрики как науки
- •2.Определение (предмет) эконометрики
- •3.Эконометрический метод и этапы эконометрического исследования
- •4.Измерения в экономике
- •5.Парная регрессия и корреляция. Способы задания уравнения парной регрессии
- •6.Линейная модель парной регрессии. Смысл и оценка параметров.
- •7.Оценка существенности параметров и уравнения линейной регрессии
- •9.Прогноз по линейному уравнению регрессию.
- •10.Средняя ошибка аппроксимации
- •12.Корреляция и детерминация для нелинейной регрессии.
- •13.Коэффициенты эластичности для разных видов регрессионных моделей.
- •15.Оценка адекватности модели.
- •18.Отбор факторов при построении уравнения множественной регрессии.
- •20.Множественная корреляция.
- •22.Частные коэффициенты корреляции
- •24.Частный f-критерий Фишера для уравнения множественной регрессии
- •26.Фиктивные переменные во множественной регрессии
- •31.Структурная и приведенная формы модели.
- •34.Основные элементы временного ряда.
- •35.Автокорреляция уровней временного ряда и выявление его структуры.
- •36.Моделирование тенденции временного ряда.
- •37.Моделирование сезонных и циклических колебаний: аддитивная и мультипликативная модель временного ряда.
- •38.Автокорреляция а остатках. Критерий Дарбина-Уотсона.
- •39.Методы исключения тенденции.
- •40.Динамические эконометрические модели.
- •41.Характеристика модели с распределенным лагом.
24.Частный f-критерий Фишера для уравнения множественной регрессии
Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-критерия Фишера:
,
где Dфакт - факторная сумма квадратов
на одну степень свободы;
Dост - остаточная сумма квадратов на одну степень свободы;
R2 - коэффициент (индекс) множественной детерминации;
m – число параметров при переменных х
n – число наблюдений.
Частный F-критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. Предположим, что оцениваем значимость влияния х1 как дополнительно включенного в модель фактора. Используем следующую формулу:
,
где
-
коэффициент множественной детерминации
для модели с полным набором факторов;
-
тот же показатель, но без включения в
модель фактора х1;
n – число наблюдений
m – число параметров в модели (без свободного члена).
Если оцениваем значимость влияния фактора хn после включения в модель факторов x1,x2, …,xn-1, то формула частного F-критерия определится как
В общем виде для фактора xi частный F-критерий Фишера определится как
Фактическое значение F-критерия Фишера сравнивается с табличным при 5%-ном или 1%-ном уровне значимости и числе степеней свободы: m и n-m-1. Если Fфакт>Fтабл(a,n,n-m-1), то дополнительное включение фактора xi в модель статистически оправданно и коэффициент чистой регрессии bi при факторе xi статистически значим. Если же Fфакт<Fтабл(a,n,n-m-1), то дополнительное включение фактора xi в модель существенно не увеличивает долю объясненной вариации признака y, следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.
С помощью частного F-критерия Фишера можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор xi вводился в уравнение множественной регрессии последним.
Если уравнение содержит больше двух факторов, то соответствующая программа ПК дает таблицу дисперсионного анализа, показывая значимость последовательного добавления к уравнению регрессии соответствующего фактора. Так, если рассматривается уравнение
y=a+b1x1+b2x2+ b3x3+ε,
то определяются последовательно F-критерий для уравнения с одним фактором х1, далее F-критерий для дополнительного включения в модель фактора х2, т.е. для перехода от однофакторного уравнения регрессии к двухфакторному, и, наконец, F-критерий для дополнительного включения в модель фактора х3 после включения в модель фактора х1 и х2. В этом случае F-критерий для дополнительного включения фактора х1 после х2 является последовательным в отличие от F-критерия для дополнительного включения в модель фактора х3, который является частным F-критерием, ибо оценивает значимость фактора в предположении, что он включен в модель последним.
26.Фиктивные переменные во множественной регрессии
До сих в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, таки, например, как профессия, пол, образования, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные должны быть преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называтьфиктивными переменными.
Рассмотрим применение
фиктивных переменных для функции спроса.
Предположим что по группе лиц мужского
и женского пола изучается линейная
зависимость потребления кофе от цены.
В общем виде для совокупности обследуемых
уравнение регрессии имеет вид: гдеy –
количество потребляемого кофе, x –
цена.
Аналогичные
уравнения могут быть найдены отдельно
для лиц мужского пола: и
женского пола:
Различия в потреблении
кофе проявятся в различии средних и
.
Вместе с тем сила влиянияx на yможет
быть одинаковой, т.е.
В
таком случае возможно построение общего
уравнения регрессии с включением в него
фактора «пол» в виде фиктивной
переменной.
где -
это фиктивные переменные, принимающие
значения:
В общем уравнении
регрессии зависимая переменная y рассматривается
как функция не только цены x,
но и пола ().
Переменнаяz рассматривается
как дихотомическая переменная, принимающая
всего два значения: 1 и 0. при этом когда
,
то
и,
наоборот, при
переменная
Для лиц мужского
пола, когда и
,
объединенное уравнение регрессии
составит:
а
для лиц женского пола, когда
и
Иными
словами, различия в потреблении для лиц
мужского и женского пола вызваны
различиями свободных членов уравнения
регрессии:
Параметрb является
общим для всей совокупности лиц, как
для мужчин, так и для женщин.
Фиктивные переменные широко используются для оценки сезонных различий в потреблении. Они могут вводиться не только в линейные, но и в нелинейные модели, приводимые путем преобразования к линейному виду.
Прием введения в анализируемую линейную модель регрессии фиктивных переменных используется обычно при работе с неоднородными исходными статистическими данными. Статистическая надежность будет выше. В ходе построения регрессионной модели с фиктивными переменными мы получаем возможность одновременно проверять гипотезы о наличии или отсутствии статистически значимого влияния сопутствующих переменных на структуру анализируемой модели. Однако нельзя рассматривать фиктивные переменные как панацею при применении методов регрессии к неоднородным данным.