
- •Вопрос 1. Понятие систем линейных уравнений. Их решения.
- •Вопрос 2.Методы решение систем линейных уравнений.
- •Вопрос 3. Определители 2-го и 3-го порядка
- •Вопрос 4 Определители n-го порядка.
- •Вопрос 5. Понятие минора и алгебраического дополнения.
- •Вопрос 6. N-мерные векторы, операции над ними.
- •Вопрос 7 Понятие эн-мерного векторного пространства. Линейная зависимость вектора.
- •Вопрос 10. Ранг матрицы.
- •Вопрос 8. Определение ранга матрицы
- •Вопрос 9.10.11
- •Вопрос 12.Обратная матрица
- •Вопрос 15. Плоскость. Взаимное расположение плоскостей.
- •Вопрос 16. Взаимное расположение прямой и плоскости в пространстве.
- •Вопрос 17. Основные понятия и свойства функций
- •Вопрос 18.Понятие элементарной функции и их классификация.
- •Вопрос 19.Числовая последовательность и её пределы.
- •Вопрос 20. Предел функции основные понятия о пределах. Понятие бесконечно малых и бесконечно больших величин
- •Вопрос 24. Правила дифференцирования
- •25. Производная основный элементарных функций. Таблица производных
- •Вопрос 26. Понятие Дифференциала и его свойства. (продолжение вопрос 24)
- •Вопрос 27. Теорема о промежуточном значении.
- •Вопрос28.Применение производной в исследовании функций
- •Вопрос 29:Понятие экстремума функции
- •Вопрос 30. Выпуклые функции.
- •Вопрос 33.
- •Вопрос 34. Экстремумы функций нескольких переменных. (Не весь)
- •Вопрос 36 Методы интегрирования.
- •Вопрос 37. Определенный интеграл Римана, Дарбу, Ньютона-Лейбница, виды интегрируемых функций.
- •Вопрос 39 Несобственные интегралы
Вопрос 27. Теорема о промежуточном значении.
Теорема о промежуточном значении (или Теоре́ма Больца́но — Коши́) утверждает, что если непрерывная функция определённая на вещественном интервале принимает два значения, то она принимает и любое значение между ними.
Пусть
дана непрерывная
функциянаотрезкеПусть
также
и
без ограничения общности предположим,
что
Тогда
для любого
существует
такое,
что
.
Доказательство
Рассмотрим
функцию Она
непрерывна на отрезке
и
,
Покажем,
что существует такая точка
,
что
Разделим
отрезок
точкой
на
два равных по длине отрезка, тогда
либо
и
нужная точка
найдена,
либо
и
тогда на концах одного из полученных
промежутков функция
принимает
значения разных знаков (на левом конце
меньше нуля, на правом больше).
Обозначив
полученный отрезок ,
разделим его снова на два равных по
длине отрезка и т.д. Тогда, либо через
конечное число шагов придем к искомой
точке
,
либо получим последовательностьвложенных
отрезков
по
длине стремящихся к нулю и таких, что
Пусть -
общая точка всех отрезков
,
Тогда
и
в силу непрерывности функции
Поскольку
получим,
что
Следствия:
(Теорема о нуле непрерывной функции.) Если функция непрерывна на некотором отрезке и на концах этого отрезка принимает значения противоположных знаков, то существует точка, в которой она равна нулю. Формально: пусть
и
Тогда
такое, что
В частности любой многочленнечётнойстепени имеет по меньшей мере один нуль.
Замечание:
Иногда (в учебных курсах) утверждение для нуля называется первой теоремой Больцано — Коши, а общее утверждение — второй теоремой соответственно[1]. На самом деле они эквивалентны.
Обобщение:
Теорема
Больцано — Коши допускает обобщение
на более общие топологические
пространства. Всякая непрерывная
функция,
определенная насвязномтопологическом
пространстве, принимающая какие-либо
два значения, принимает и любое лежащее
между ними. Формальная запись: пусть
дано связное топологическое пространство
и
функция
Пусть
и
Тогда
В такой формулировке теорема является частным случаем теоремы о том, что образ связного множества при непрерывном отображении связен.
Вопрос28.Применение производной в исследовании функций
Связь между непрерывностью и дифференцируемостью функции. Если функция f ( x ) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.
С л е д с т в и е . Если функция разрывна в некоторой точке, то она не имеет производной в этой точке.
Достаточные признаки монотонности функции.
Если f ’( x ) > 0 в каждой точке интервала ( a, b ), то функция f ( x ) возрастает на этом интервале.
Если f ’( x ) < 0 в каждой точке интервала ( a, b ) , то функция f ( x ) убывает на этом интервале.
Теорема Дарбу. Точки, в которых производная функции равна 0 или не существует, делят область определения функции на интервалы, внутри которых производная сохраняет знак.
Критические точки. Внутренние точки области определения функции, в которых производная равна нулю или не существует, называютсякритическими точками этой функции. Эти точки очень важны при анализе функции и построении её графика, потому что только в этих точках функция может иметь экстремум ( минимум или максимум , рис.5а,б).
Необходимое условие экстремума. Если x0 - точка экстремума функции f(x) и производная f’ существует в этой точке, то f’(x0)=0.
Эта теорема - необходимое условие экстремума. Если производная функции в некоторой точке равна 0, то это не значит, что функция имеет экстремум в этой точке.
Достаточные условия экстремума.
Если производная при переходе через точку x0 меняет свой знак с плюса на минус, то x0 - точка максимума.
Если производная при переходе через точку x0 меняет свой знак с минуса на плюс, то x0 - точка минимума.
План исследования функции. Для построения графика функции нужно:
1) найти область определения и область значений функции,
2) установить, является ли функция чётной или нечётной,
3) определить, является ли функция периодической или нет,
4) найти нули функции и её значения при x = 0,
5) найти интервалы знакопостоянства,
6) найти интервалы монотонности,
7) найти точки экстремума и значения функции в этих точках,
8) проанализировать поведение функции вблизи “особых” точек
и при больших значениях модуля x .