Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электронные приборы. doc.doc
Скачиваний:
627
Добавлен:
11.05.2015
Размер:
19.08 Mб
Скачать

3.5. Модель Гуммеля – Пуна

При автоматизированном моделировании БТ на ЭВМ на первое место по сравнению с вычислительной простотой выходит точность моделей. Математические модели БТ, предназначенные для автоматизированного проектирования, должны обеспечивать высокую точность расчетов, как для большого, так и для малого сигнала, а описывающие их параметры должны достаточно легко определяться и проверяться. Чтобы описать эффекты, не учитываемые моделью Эберса – Молла, систему уравнений (3.5)–(3.7) следует дополнить соответствующими членами. Гуммель и Пун продемонстрировали относительно простые методы, с помощью которых эту систему уравнений можно модифицировать таким образом, чтобы описать три важных эффекта второго порядка: 1) рекомбинацию в области объемного заряда эмиттерного перехода при малых напряжениях смещения эмиттер – база; 2) снижение коэффициента усиления по току, наблюдаемое при больших токах; 3) влияние расширения области объемного заряда (эффект модуляции ширины базы или эффект Эрли) на ток связи между эмиттером и коллектором. Эти эффекты второго порядка вызывают отклонение реальных характеристик приборов от идеальных, как показано на рис. 3.6. Цифры (см. рис. 3.6) соответствуют нумерации эффектов в тексте. В результате такой модификации с включением указанных эффектов получается модель Гуммеля – Пуна, удобная для автоматизированного моделирования. Модель Гуммеля – Пуна используется в модуле PSpice пакета OrCAD. Перечень параметров этой модели приведен в табл. 12.16, а эквивалентная схема БТ, соответствующая данной модели, показана на рис. 3.7. Обозначения элементов (рис. 3.7) соответствуют обозначениям параметров модели БТ в модуле PSpice.

а б

Рис. 3.6

Снижение коэффициента передачи по току при больших токах (эффект больших токов) описывается в модели Гуммеля – Пуна такими параметрами, как ток начала спада зависимости от тока коллектора в активном и инверсном режиме (IKF, IKR). Параметр IKF определяется координатой точки пересечения прямой, аппроксимирующей зависимость при больших токах, с осью токов, как показано на рис. 3.6,а. Эффект модуляции ширины базы учитывается такими параметрами, как напряжение Эрли в активном и инверсном режиме (VAF, VAR). Параметр VAF определяется координатой точки пересечения прямых, аппроксимирующих выходные характеристики БТ с ОЭ на участке активного режима, с осью напряжений, как показано на рис. 3.6,б. Параметры IKF, IKR, VAF, VAR входят в выражение для заряда базы (см. рис. 3.7).

Рекомбинация в области объемного заряда эмиттерного перехода при малых напряжениях смещения эмиттер – база (рис. 3.6,а) в модели Гуммеля – Пуна учитывается следующим образом. Токи эмиттерного и коллекторного переходов представляются суперпозицией тока идеального и неидеального переходов, что на эквивалентной схеме (см. рис. 3.7) представлено четырьмя диодами.

Рис. 3.7

3.6. Частотные свойства бт

Параметры транзистора и в первую очередь его усилительные свойства в значительной степени зависят от частоты усиливаемого сигнала. Причинами этого являются инерционность процессов переноса инжектированных носителей из эмиттера транзистора в коллектор, а также наличие емкостей и сопротивлений переходов транзистора.

При усилении сигнала с частотой f = 1/T, если время пролета носителей соизмеримо с периодом усиливаемых колебаний ~T, то происходит запаздывание коллекторного тока по отношению к эмиттерному. Момент времени, соответствующий максимальному значению тока коллектора, отстает от момента времени в точке максимума тока эмиттера, как показано на рис. 3.8. Это приводит к появлению фазового сдвига между током эмиттера и током коллектора на векторной диаграмме, которая показана на рис. 3.9. Коэффициенты передачи по току в схеме с ОБ и ОЭ становятся комплексными величинами:

; . (20.38)

Сравнение векторных диаграмм для токов БТ на низких (рис. 3.9,а) и высоких частотах (рис. 3.9,б) показывает, что появление такого фазового сдвига приводит к росту амплитуды тока базы, а значит, к уменьшению значения модуля коэффициента передачи по току в схеме с ОБ.

Частотные зависимости комплексных коэффициентов передачи по току в схемах с ОБ и ОЭ описываются следующими выражениями:

; , (20.40)

где ;, – статические коэффициенты передачи по току БТ в схеме с ОБ и ОЭ соответственно; , – предельные частоты коэффициентов передачи по току в схеме с ОБ и ОЭ соответственно.

Предельной частотой коэффициента передачи по току в схеме с ОБ (ОЭ) () называется частота, на которой модуль коэффициента передачи по току в схеме с ОБ (ОЭ) уменьшается враз по сравнению с его низкочастотным значением.

Частотные зависимости модулей комплексных коэффициентов передачи по току в схемах с ОБ и ОЭ описываются выражениями

; . (20.1)

На рис. 3.10 показаны графики зависимостей модуля и фазы комплексных коэффициентов передачи по току в схемах с ОБ и ОЭ. На низких частотах фаза комплексных коэффициентов передачи по току стремится к 0, на высоких частотах к –90°, а на частоте, равной предельной, фаза равна –45°.

Предельная частота в схеме с ОБ значительно выше, чем в схеме с ОЭ:

, (20.42)

где m=0,2…0,6.

Частотные свойства БТ описываются еще одним параметром граничной частотой коэффициента передачи по току в схеме с ОЭ, на которой модуль коэффициента передачи по току в схеме с ОЭ становится равным единице (рис. 3.10). Из данного определения легко устанавливается связь между граничной частотой и предельной частотой коэффициента передачи по току в схеме с ОЭ. Из (3.18) можно записать

,

тогда, если пренебречь в подкоренном выражении 1, получим

. (20.43)

Уменьшение модуля коэффициента передачи по току БТ с ростом частоты приводит к уменьшению коэффициентов усиления по напряжению и мощности усилителей на их основе. Наибольшую частоту, при которой транзистор способен генерировать колебания в схеме автогенератора, называют максимальной частотой генерации . Ее связь с граничной частотой описывается выражением

. (20.44)

Коэффициент усиления по мощности БТ на частоте становится равным единице, т.е. транзистор на частотах вышетеряет способность усиливать электрические сигналы.

Механизм влияния емкостей переходов БТ на его усилительные свойства с ростом частоты сигнала заключается в следующем. Уменьшение реактивного сопротивления емкостей переходов с ростом частоты приводит к уменьшению входного и выходного сопротивления БТ, а значит, и к уменьшению амплитуды полезного сигнала на входе и выходе усилителя, т.е. к уменьшению коэффициента усиления по напряжению.

Для повышения рабочего диапазона частот БТ необходимо:

уменьшать их геометрические размеры – ширину базы и площади поперечного сечения переходов, уменьшая тем самым время пролета и емкости переходов;

увеличивать скорость движения инжектированных носителей путем неравномерного легирования базы (для создания дополнительного ускоряющего поля в ней); использования полупроводниковых материалов с большей подвижностью носителей (арсенид галлия, фосфид индия);

уменьшать сопротивление базы, используя в структуре БТ гетеропереход, в котором односторонняя инжекция из эмиттера в базу возможна при концентрации примеси в базе большей, чем в эмиттере.