- •Электронный учебник по курсу "Основы оптики"
- •1. Описание световых волн
- •1.1. Основные свойства световых полей
- •1.2. Уравнения Максвелла
- •1.3. Математическое описание электромагнитных волн
- •1.3.1. Волновые уравнения
- •1.3.2. Монохроматическое поле
- •1.3.3. Комплексная амплитуда
- •Сложение некогерентных полей
- •1.4.3. Квазимонохроматическое и полихроматическое поле
- •1.4.4. Простейшие монохроматические волны
- •Плоские и сферические волны
- •2. Энергетика световых волн
- •2.1.3. Сила излучения
- •2.1.4. Энергетическая яркость
- •2.1.5. Инвариант яркости вдоль луча
- •2.1.6. Поглощение света средой
- •2.2. Световые величины
- •2.2.1. Световые величины
- •2.2.2. Связь световых и энергетических величин
- •Сопоставление энергетических и световых единиц
- •2.4. Поток от излучателей различной формы
- •2.5. Яркость рассеивающей поверхности
- •2.6. Освещенность, создаваемая различными источниками (закон обратных квадратов)
- •3 Прохождение света через границу раздела двух сред
- •3.1. Отражение и преломление света на границе раздела двух сред
- •3.1.1. Закон преломления
- •3.1.2. Закон отражения
- •3.3.3. Просветление оптики. Тонкие пленки
- •4. Геометрическая оптика
- •4.1. Приближение коротких длин волн. Уравнение эйконала
- •4.2. Основные понятия геометрической оптики
- •4.2.1. Волновой фронт и лучи
- •4.2.2. Оптическая длина луча
- •4.2.3. Конгруэнция лучей.
- •4.2. Основные понятия геометрической оптики
- •4.2.1. Волновой фронт и лучи
- •4.2.2. Оптическая длина луча
- •4.2.3. Конгруэнция лучей.
- •4.4. Пучки лучей
- •4.4.1. Гомоцентрические пучки лучей
- •4.4.2. Негомоцентрические пучки
- •4.4.3. Астигматический пучок
- •4.5. Перенос поля в приближении геометрической оптики. Пределы применимости геометрической оптики
- •4.5.1. Уравнение переноса комплексной амплитуды в приближении геометрической оптики
- •4.5.2. Пределы применимости геометрической оптики
- •5. Геометрическая теория оптических изображений. Идеальные оптические системы
- •5.1. Описание оптических систем
- •5.1.1. Элементы оптических систем
- •Оптические среды
- •Оптические поверхности
- •Диафрагмы
- •5.1.2. Взаимное расположение элементов в оптической системе Центрированная оптическая система
- •Правила знаков
- •Меридиональная и сагиттальная плоскости
- •5.2.2. Линейное, угловое, продольное увеличение
- •5.2.4. Построение изображений
- •5.3. Основные соотношения параксиальной оптики
- •5.3.1. Зависимость между положением и размером предмета и изображения
- •5.3.2. Угловое увеличение и узловые точки
- •5.3.3. Частные случаи положения предмета и изображения
- •5.3.4. Связь продольного увеличения с поперечным и угловым
- •5.3.5. Диоптрийное исчисление
- •5.3.6. Инвариант Лагранжа-Гельмгольца
- •6. Матричная теория Гауссовой оптики
- •6.3.1. Пакет из плоскопараллельных слоев
- •7. Реальные оптические системы. Ограничения пучков
- •7.1. Реальные (действительные) лучи
- •7.1.1. Расчет хода реальных лучей
- •7.1.2. Причины «непрохождения» лучей через поверхность
- •7.2. Ограничения пучков лучей
- •7.2.1. Апертурная диафрагма
- •7.2.2. Полевая диафрагма
- •7.2.3. Виньетирование
- •7.3. Описание предметов, изображений и зрачков
- •7.3.1. Обобщенные характеристики
- •7.3.2. Обобщенный инвариант Лагранжа-Гельмгольца
- •8.1.3. Волновая аберрация
- •8.1.4. Продольные аберрации
- •8.2. Монохроматические аберрации
- •8.2.3. Кома
- •Кома и неизопланатизм
- •8.2.4. Астигматизм и кривизна изображения
- •8.2.5. Дисторсия
- •8.3. Хроматические аберрации
- •8.3.1. Хроматизм положения
- •Принципы ахроматизации оптических систем
- •8.3.2. Хроматизм увеличения
- •9. Структура и качество оптического изображения
- •9.1.4. Оптическая передаточная функция (опф)
- •9.2. Схема формирования оптического изображения
- •9.3. Дифракционная структура изображения
- •9.3.1. Функция рассеяния точки в случае отсутствия аберраций
- •Фрт безаберрационной оптической системы
- •9.3.2. Влияние неравномерности пропускания по зрачку на фрт
- •9.3.3. Безаберационная опф. Предельная пространственная частота
- •9.4. Критерии качества оптического изображения
- •9.4.1. Предельная разрешающая способность по Релею
- •9.4.2. Разрешающая способность по Фуко
- •9.5. Влияние аберраций на фрт и опф
- •9.5.1. Число Штреля
- •9.5.2. Критерий Релея для малых аберраций
- •9.5.3. Формула Марешаля. Допуск Марешаля для малых аберраций
- •9.5.4. Влияние аберраций на опф. Геометрически-ограниченные и дифракционно-ограниченные оптические системы
- •Глоссарий абвгдезиклмнопрстуфхцчэя a
2.2.2. Связь световых и энергетических величин
|
Функция видности |
|
Определить некую световую величину
(поток,
сила света, яркость, и т.д.), по спектральной
плотности соответствующей ей энергетической
величины
можно
по общей формуле:
|
|
где
–
функция видности глаза, 680 – экспериментально
установленный коэффициент.
Сопоставление энергетических и световых единиц
|
Энергетические |
Световые | ||
|
Наименование и обозначение |
Единицы измерения |
Наименование и обозначение |
Единицы измерения |
|
поток
излучения
|
|
световой
поток
|
|
|
энергетическая
сила света
|
|
сила света
|
|
|
энергетическая
освещенность
|
|
освещенность
|
|
|
энергетическая
светимость
|
|
светимость
|
|
|
энергетическая
яркость |
|
яркость
|
|
2.2.3. Практические световые величины и их примеры
Световая экспозиция
Световая экспозиция
– это величина энергии, приходящейся
на единицу площади за некоторое время
(освещенность,
накопленная за время от
до
):
|
|
Если освещенность постоянна, то экспозиция определяется выражением:
![]()
Блеск
Блеск
–
это освещенность, создаваемая точечным
источником в плоскости зрачка наблюдателя,
.
Понятие блеска применяемая при визуальном
наблюдении точечного источника света.
Видимый блеск небесных тел оценивается
в звездных величинах
.
Чем меньше звездная величина, тем больше
блеск. Шкала звездных величин
устанавливается следующим экспериментальным
соотношением:
![]()
2.3. Модели источников излучения
Источник излучения– это некоторая поверхность, излучающая энергию. Общими характеристиками источника излучения являются:
поток излучения;
диаграмма силы света– показывает распределение силы света в пространстве
;яркость
,
гдеx,y– координаты на поверхности
источника,
,
–
углы в полярных координатах.
Полная модель источника определяется
спектральной
плотностью энергетической яркости
,
зависящей от линейного вектора
и
углового вектора
.
Ламбертовский излучатель– это такой излучатель, у которого яркость постоянна и не зависит от направления (то есть не зависит от положения точки на поверхности и от угла наблюдения).
|
|
Диаграмма распределения силы света |
Сила света | ||||
|
Плоский ламбертовский излучатель (бесконечно тонкий плоский диск) |
|
Закон Ламберта (закон косинусов): Плоская поверхность, имеющая одинаковую яркость по всем направлениям, излучает свет, сила которого изменяется по закону косинуса:
где
| ||||
|
Сферический ламбертовский излучатель |
|
Сила света от сферического ламбертовского источника постоянна во всех направлениях:
|



,
