- •Экзаменационный билет n 1
- •1. Понятие системы, системного подхода и анализа.
- •2. Рынок информационных ресурсов.
- •Вопрос 2 Всемирная паутина. World Wide Web (Internet), в том числе спутниковые средства доступа.
- •2. Всемирная паутина. World Wide Web (Internet), в том числе
- •3. Роль и место ит в геодезии и картографии.
- •Экзаменационный билет n 3
- •2. Типы сетевого взаимодействия:
- •Территориальная сеть
- •Территориально распределенная сеть; Региональная сеть
- •Wide area network (wan)
- •3. Принципы разбивочных работ.
- •Экзаменационный билет n 4
- •1. Этапы перехода от постиндустриального общества к информационному.
- •2. Топографические карты, номенклатура карт и планов.
- •3. Примеры профессиональных программных пакетов, например:
- •Экзаменационный билет n 5
- •2. Intranet/Internet технологии в геодезии ( технологии клиент/сервер).
- •3. Функциональные модели информационных объектов и бизнес-
- •Экзаменационный билет n 11
- •1. Кодирование информации, методы передачи информации, данные.
- •2. Теодолитная и тахеометрическая съемки.
- •3. Практический менеджмент информационных продуктов и
- •Экзаменационный билет n 12
- •1. Мировые информационные ресурсы.
- •2. Internet как транспортная среда для корпоративных информационных
- •3. Принципы оценки инженерно-геодезических работ.
- •Экзаменационный билет n 13
- •1. Web- ресурсы, методы поиска информации в Internet.
- •2. Организация хранения информационных ресурсов, вопросы
- •3. Проекции, применяемые при решении задач геодезии
- •Экзаменационный билет n 14
- •1. Операционные системы (ос): классификация, требования к порядку
- •2. Методы космической геодезии. Методы космической геодезии
- •3. Автоматизированное проектирование ис.
- •Экзаменационный билет n 15
- •1. Сервисы по: драйверы, интерфейсы, редакторы, средства передачи
- •2. Растровая и векторная графика в геодезии и картографии.
- •3. Архитектура микропроцессорных и компьютерных систем
- •1.4. Архитектура микропроцессорных систем
- •Вопрос 1
- •Экзаменационный билет n 16
- •Экзаменационный билет n 17
- •1. Жизненный цикл по.
- •2. Организационные методы защиты ис.
- •3. Фундаментальные геодезические постоянные.
- •Экзаменационный билет n 18
- •1. Геодезические приборы для измерений расстояний.
- •2. Нормативно-правовая база организации защиты информации.
- •3. Основы построения государственной геодезической сети (ггс) рф.
- •Экзаменационный билет n 19
- •2. Информационная инфраструктура предприятия (клиентская сеть).
- •3. Авторские права на профессиональные базы данных.
- •Экзаменационный билет n 20
- •2. Система государственной кодификации информационных ресурсов в
- •3. Проектирование гис.
- •Экзаменационный билет n 21
- •1. Средства линейных измерений в ггс.
- •2. Ис в геодезической и картографической сферах.
- •3. Порядок решения задач; обработка и хранение результатов, средства
- •Экзаменационный билет n 22
- •1. Web – дизайн.
- •Этапы проектирования Дизайн основной и типовых страниц сайта
- •2. Определение площадей. Электронные способы измерения площадей.
- •Экзаменационный билет n 23
- •1. Web – документы.
- •2. Автоматизированные ис.
- •3. Основы построения государственной геодезической сети (ггс) рф.
- •Экзаменационный билет n 24
- •1. Организация государственной геодезической службы в России.
- •2. Основные определения надежности ис.
- •3. Стандартизация сетей (iso, osi, эмвос – эталонная модель
- •Эталонная модель
- •Экзаменационный билет n 25
- •1. Топографические карты, номенклатура карт и планов.
- •Разбиение листа 1:1 000 000 на листы масштаба 1:200 000
- •Разбиение листа 1:1000000 на листы масштаба 1:100000
- •Приведем соответствие
- •2. Инженерно-техническая и физическая защита объектов в ис.
- •3. Клиентские сети; технологии «последней мили», сравнение технологий подключения клиентов.
- •Экзаменационный билет n 26
- •1. Ориентирование. Ориентирные углы, связь между ними.
- •Азимуты, румбы, дирекционные углы и зависимости между ними
- •2. Надежность, стандартизация и управления качеством в геодезии.
- •Государственный геодезический надзор
- •О строительных допусках
- •3. Структура методов информационной безопасности.
- •Определения
- •Стандарты в области информационной безопасности
- •Экзаменационный билет n 27
- •1. Рельеф местности и его изображение на топографических картах.
- •Методы изображения рельефа на планах и картах
- •Горизонтали
- •Чем меньше высота сечения, тем точнее должна быть выполнена работа по съемке рельефа.
- •3.Управление интеллектуальной собственностью предприятий и
- •Управление интеллектуальной собственностью предприятий и организаций.
- •Виды интеллектуальной собственности Авторское право
- •Смежные права
- •Виды нарушений права интеллектуальной собственности
- •Международная защита интеллектуальной собственности
- •Законодательство России в сфере интеллектуальной собственности
- •Экзаменационный билет n 28
- •1. Электронные способы измерения расстояний. Электронные способы измерения расстояний
- •Измерение длины линий дальномерами
- •2. Классификация методов проектирования ис. Классификация методов проектирования ис
- •3. Методологические основы описания системы, как объекта исследования или инженерной деятельности.
- •Экзаменационный билет n 29
- •1. Понятие, определение информационной системы (ис).
- •Классификации информационных систем Классификация по архитектуре
- •Классификация по степени автоматизации
- •Классификация по характеру обработки данных
- •Классификация по сфере применения
- •Классификация по охвату задач (масштабности)
- •2. Определение компьютерных сетей, соединительных сетей
- •Классификация По территориальной распространенности
- •По типу функционального взаимодействия
- •3. Методы оценки точности результатов геодезических измерений.
- •Экзаменационный билет n 30
- •1. Структура ис.
- •2. Основы криптографии, стеганографии, шифрования, хеширования, как способы защиты информации.
- •3. Ис обработки и представления данных (карты, планы и т.П.)
- •Экзаменационный билет n 31
- •Экзаменационный билет n 32
2. Система государственной кодификации информационных ресурсов в
РФ (УДК, ГРНТИ и др.).
ДОПИСАТЬ
3. Проектирование гис.
Геоинформационная система предназначена для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах.[1] Термин также используется в более узком смысле — ГИС как инструмент (программный продукт), позволяющий пользователям искать, анализировать и редактировать цифровые карты, а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.
ГИС включают в себя возможности cистем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.
По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).
ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.
Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.
Структура ГИС
Данные (пространственные данные):
позиционные (географические): местоположение объекта на земной поверхности.
непозиционные (атрибутивные): описательные.
Аппаратное обеспечение (ЭВМ, сети, накопители, сканер, дигитайзеры и т. д.).
Программное обеспечение (ПО).
Технологии (методы, порядок действий и т. д.).
Вопросы, на которые может ответить ГИС
Что находится в…? (определяется место).
Где это находится? (пространственный анализ).
Что изменилось начиная с…? (определить временные изменения на определенной площади).
Какие пространственные структуры существуют?
Что если? (моделирование, что произойдет, если добавить новую дорогу).
Представление данных
Данные в ГИС описывают реальные объекты, такие как дороги, здания, водоемы, лесные массивы. Реальные объекты можно разделить на две абстрактные категории: дискретные (дома, территориальные зоны) и непрерывные (рельеф, уровень осадков, среднегодовая температура). Для представления этих двух категорий объектов используются векторные и растровые данные.
Растровые данные
Растровые данные хранятся в виде наборов величин, упорядоченных в форме прямоугольной сетки. Ячейки этой сетки называются пикселями. Наиболее распространенным способом получения растровых данных о поверхности Земли является дистанционное зондирование, проводимое при помощи спутников. Хранение растровых данных может осуществляться в графических форматах, например TIF или JPEG, или в бинарном виде в базах данных.
Векторные данные
Наиболее распространенными типами векторных объектов являются:
Точки
Используются для обозначения географических объектов, для которых важно местоположение, а не их форма или размеры. Возможность обозначения объекта точкой зависит от масштаба карты. В то время как на карте мира города целесообразно обозначать точечными объектами, то на карте города сам город представляется в виде множества объектов. В ГИС точечный объект изображается в виде некоторой геометрической фигуры небольших размеров (квадратик, кружок, крестик), либо пиктограммой, передающей тип реального объекта.
Полилинии
Служат для изображения линейных объектов. Полилиния — ломаная линия, составленная из отрезков прямых. Полилиниями изображаются дороги, железнодорожные пути, реки, улицы, водопровод. Допустимость изображения объектов полилиниями также зависит от масштаба карты. Например, крупная река в масштабах континента вполне может изображаться линейным объектом, тогда как уже в масштабах города требуется её изображение площадным объектом. Характеристикой линейного объекта является длина.
Многоугольники (полигоны)
Служат для обозначения площадных объектов с четкими границами. Примерами могут служить озера, парки, здания, страны, континенты. Характеризуются площадью и длиной периметра.
В ГИС к векторным объектам могут быть привязаны семантические данные. К примеру, на карте территориального зонирования к площадным объектам, представляющим зоны, может быть привязана характеристика типа зоны. Структуру и типы данных определяет пользователь. На основе численных значений, присвоенных векторным объектам на карте, может строиться тематическая карта, на которой эти значения обозначены цветами в соответствии с цветовой шкалой, либо окружностями разного размера.
Векторные данные также могут описывать непрерывные поля величин. Поля при этом изображаются в виде изолиний или контурных линий. Одним из способов представления рельефа является нерегулярная триангуляционная сетка (TIN, triangulated irregular networks). Такая сетка формируется множеством точек с привязанными значениями (в данном случае высота). Значения в произвольной точке внутри сетки получаются путем интерполяции значений в узлах треугольника, в который попадает эта точка.
Векторные данные обычно имеют гораздо меньший размер, чем растровые. Их легко трансформировать и проводить над ними бинарные операции. Векторные данные позволяют проводить различные типы пространственного анализа, к примеру поиск кратчайшего пути в дорожной сети.