- •Экзаменационный билет n 1
- •1. Понятие системы, системного подхода и анализа.
- •2. Рынок информационных ресурсов.
- •Вопрос 2 Всемирная паутина. World Wide Web (Internet), в том числе спутниковые средства доступа.
- •2. Всемирная паутина. World Wide Web (Internet), в том числе
- •3. Роль и место ит в геодезии и картографии.
- •Экзаменационный билет n 3
- •2. Типы сетевого взаимодействия:
- •Территориальная сеть
- •Территориально распределенная сеть; Региональная сеть
- •Wide area network (wan)
- •3. Принципы разбивочных работ.
- •Экзаменационный билет n 4
- •1. Этапы перехода от постиндустриального общества к информационному.
- •2. Топографические карты, номенклатура карт и планов.
- •3. Примеры профессиональных программных пакетов, например:
- •Экзаменационный билет n 5
- •2. Intranet/Internet технологии в геодезии ( технологии клиент/сервер).
- •3. Функциональные модели информационных объектов и бизнес-
- •Экзаменационный билет n 11
- •1. Кодирование информации, методы передачи информации, данные.
- •2. Теодолитная и тахеометрическая съемки.
- •3. Практический менеджмент информационных продуктов и
- •Экзаменационный билет n 12
- •1. Мировые информационные ресурсы.
- •2. Internet как транспортная среда для корпоративных информационных
- •3. Принципы оценки инженерно-геодезических работ.
- •Экзаменационный билет n 13
- •1. Web- ресурсы, методы поиска информации в Internet.
- •2. Организация хранения информационных ресурсов, вопросы
- •3. Проекции, применяемые при решении задач геодезии
- •Экзаменационный билет n 14
- •1. Операционные системы (ос): классификация, требования к порядку
- •2. Методы космической геодезии. Методы космической геодезии
- •3. Автоматизированное проектирование ис.
- •Экзаменационный билет n 15
- •1. Сервисы по: драйверы, интерфейсы, редакторы, средства передачи
- •2. Растровая и векторная графика в геодезии и картографии.
- •3. Архитектура микропроцессорных и компьютерных систем
- •1.4. Архитектура микропроцессорных систем
- •Вопрос 1
- •Экзаменационный билет n 16
- •Экзаменационный билет n 17
- •1. Жизненный цикл по.
- •2. Организационные методы защиты ис.
- •3. Фундаментальные геодезические постоянные.
- •Экзаменационный билет n 18
- •1. Геодезические приборы для измерений расстояний.
- •2. Нормативно-правовая база организации защиты информации.
- •3. Основы построения государственной геодезической сети (ггс) рф.
- •Экзаменационный билет n 19
- •2. Информационная инфраструктура предприятия (клиентская сеть).
- •3. Авторские права на профессиональные базы данных.
- •Экзаменационный билет n 20
- •2. Система государственной кодификации информационных ресурсов в
- •3. Проектирование гис.
- •Экзаменационный билет n 21
- •1. Средства линейных измерений в ггс.
- •2. Ис в геодезической и картографической сферах.
- •3. Порядок решения задач; обработка и хранение результатов, средства
- •Экзаменационный билет n 22
- •1. Web – дизайн.
- •Этапы проектирования Дизайн основной и типовых страниц сайта
- •2. Определение площадей. Электронные способы измерения площадей.
- •Экзаменационный билет n 23
- •1. Web – документы.
- •2. Автоматизированные ис.
- •3. Основы построения государственной геодезической сети (ггс) рф.
- •Экзаменационный билет n 24
- •1. Организация государственной геодезической службы в России.
- •2. Основные определения надежности ис.
- •3. Стандартизация сетей (iso, osi, эмвос – эталонная модель
- •Эталонная модель
- •Экзаменационный билет n 25
- •1. Топографические карты, номенклатура карт и планов.
- •Разбиение листа 1:1 000 000 на листы масштаба 1:200 000
- •Разбиение листа 1:1000000 на листы масштаба 1:100000
- •Приведем соответствие
- •2. Инженерно-техническая и физическая защита объектов в ис.
- •3. Клиентские сети; технологии «последней мили», сравнение технологий подключения клиентов.
- •Экзаменационный билет n 26
- •1. Ориентирование. Ориентирные углы, связь между ними.
- •Азимуты, румбы, дирекционные углы и зависимости между ними
- •2. Надежность, стандартизация и управления качеством в геодезии.
- •Государственный геодезический надзор
- •О строительных допусках
- •3. Структура методов информационной безопасности.
- •Определения
- •Стандарты в области информационной безопасности
- •Экзаменационный билет n 27
- •1. Рельеф местности и его изображение на топографических картах.
- •Методы изображения рельефа на планах и картах
- •Горизонтали
- •Чем меньше высота сечения, тем точнее должна быть выполнена работа по съемке рельефа.
- •3.Управление интеллектуальной собственностью предприятий и
- •Управление интеллектуальной собственностью предприятий и организаций.
- •Виды интеллектуальной собственности Авторское право
- •Смежные права
- •Виды нарушений права интеллектуальной собственности
- •Международная защита интеллектуальной собственности
- •Законодательство России в сфере интеллектуальной собственности
- •Экзаменационный билет n 28
- •1. Электронные способы измерения расстояний. Электронные способы измерения расстояний
- •Измерение длины линий дальномерами
- •2. Классификация методов проектирования ис. Классификация методов проектирования ис
- •3. Методологические основы описания системы, как объекта исследования или инженерной деятельности.
- •Экзаменационный билет n 29
- •1. Понятие, определение информационной системы (ис).
- •Классификации информационных систем Классификация по архитектуре
- •Классификация по степени автоматизации
- •Классификация по характеру обработки данных
- •Классификация по сфере применения
- •Классификация по охвату задач (масштабности)
- •2. Определение компьютерных сетей, соединительных сетей
- •Классификация По территориальной распространенности
- •По типу функционального взаимодействия
- •3. Методы оценки точности результатов геодезических измерений.
- •Экзаменационный билет n 30
- •1. Структура ис.
- •2. Основы криптографии, стеганографии, шифрования, хеширования, как способы защиты информации.
- •3. Ис обработки и представления данных (карты, планы и т.П.)
- •Экзаменационный билет n 31
- •Экзаменационный билет n 32
3. Фундаментальные геодезические постоянные.
Фигура и гравитационное поле Земли тесно взаимосвязаны и их изучение представляет собой по существу одну задачу. Сложная структура гравитационного поля, обусловленная неправильностями фигуры Земли и особенностями распределения плотностей масс, создает значительные трудности при определении потенциала силы тяжести W. Задача определения потенциала Wсущественно облегчается, если гравитационное поле Земли представить в виде двух полей: основного, или нормального и остаточного, или аномального и каждое из них изучать отдельно.
За физическую модель Земли при этом принимают так называемый уровенный эллипсоид вращения, внешняя поверхность которого является уровенной и сила тяжести в каждой точке ее направлена по нормали к ней.
Центр уровенного эллипсоида совмещают с центром масс Земли, а ось его вращения — с осью вращения Земли. Гравитационное поле, создаваемое уровенным эллипсоидом на его поверхности и во внешнем пространстве, называют нормальным гравитационным полем, а силу тяжести — нормальной и обозначают буквой у.
Определив параметры уровенного эллипсоида, можно вычислить нормальный потенциал Uи другие элементы нормального поля силы тяжести на его поверхности и во внешнем пространстве. Приняв поверхность уровенного эллипсоида за отсчетную, задачу изучения фигуры Земли можно свести к определению отклонений ее физической поверхности от поверхности эллипсоида, а задачу определения потенциала Wреальной силы тяжести к определению небольших разностей T=W—U, называемых возмущающим потенциалом Земли в точках земной поверхности.
Уровенный эллипсоид, принимаемый за физическую модель Земли при определении ее фигуры и гравитационного поля, принято называть Нормальной Землей. При решении ряда задач геодезии, геофизики и небесной механики широкое распространение получило представление потенциала Vпритяжения Земли (включая ее атмосферу) в виде разложения в ряд шаровых функций геоцентрических координат г, Ф и L, т. е. геоцентрических радиуса, широты и долготы соответственно. Потенциал притяжения VoНормальной Земли (уровенного эллипсоида) имеет вид:
(1.12)
где индексом «О» отмечены параметры Нормальной Земли; f — универсальная гравитационная постоянная; Мо — масса уровенного эллипсоида; r— геоцентрический радиус-вектор точек его поверхности; а — большая полуось эллипсоида; /гп0 — зональные гармонические коэффициенты второй степени при полиномах Лежандра Р2п (sin Ф).
Параметры Нормальной Земли в зависимости от их величины и важности классифицируют следующим образом.
Параметры нулевого порядка: геоцентрическая гравитационная постоянная fM; нормальный потенциал силы тяжести на поверхности Нормальной Земли U0; экваториальный радиус Земли а; нормальная сила тяжести на экваторе .
Параметры, порядка сжатия: нормальный гармонический коэффициент геопотенциала второй степени J2; геометрическое сжатие Земли а=(а—b)/а; гравиметрическое сжатие Земли P=(, где р — нормальная сила тяжести на полюсе; малые параметры, являющиеся функцией угловой скорости вращения Земли со, и параметры нулевого порядка, а именно:
(1.13)
(1.14)
Параметры высших порядков: коэффициент 1 в формуле нормальной силы тяжести; гармонические коэффициенты нормального потенциала притяжения J4°, Jв0, ... и т. д.
Фундаментальные геодезические постоянные
Из-за особой важности некоторые параметры Нормальной Земли получили название фундаментальных геодезических постоянных, К ним в настоящее время относят следующие величины: fM, а, J2, , где — угловая скорость вращения Земли. Другие параметры Нормальной Земли являются производными постоянными. Их можно получить, используя известные соотношения между различными параметрами.
К числу фундаментальных постоянных относят также: скорость света в вакууме с, геоцентрическую гравитационную постоянную для атмосферы fMAи универсальную гравитационную постоянную f.
Фундаментальные геодезические постоянные определяют, используя результаты наблюдений ИСЗ, далеких КЛА, а также результаты астрометрических и гравиметрических измерений.
Параметры Нормальной Земли определяют, соблюдая следующие условия:
1) центр уровенного эллипсоида вращения должен совпадать с центром масс Земли, а его главная ось инерции, являющаяся осью его вращения, — с осью вращения Земли;
2) угловые скорости со вращения уровенного эллипсоида и реальной Земли должны быть одинаковыми;
3) масса Мо уровенного эллипсоида должна быть равна массе М реальной Земли (fMo=fM);
4) зональные гармонические коэффициенты геопотенциала второй степени для уровенного эллипсоида J2° и реальной Земли /г должны совпадать ;
5) нормальный потенциал Uoсилы тяжести на поверхности уровенного эллипсоида должен быть равен реальному потенциалу силы тяжести Woна поверхности геоида.
При решении ряда задач геодезии вместо Uoв число фундаментальных геодезических постоянных включают большую полуось а уровенного эллипсоида. Тогда пятое условие формулируют иначе: большая полуось а уровенного эллипсоида должна быть подобрана таким образом, чтобы его объем равнялся объему геоида.
С течением времени по мере накопления измерительной информации фундаментальные геодезические постоянные постепенно уточняются. В соответствии с рекомендациями XVII Генеральной ассамблеи Международного геодезического и геофизического союза (МГГС) и входящей в него Международной ассоциации геодезии (МАГ), состоявшейся в Канберре (Австралия, 1979 г.), приняты следующие значения фундаментальных геодезических постоянных:
fM= (3 896005±0,5) · 108 м3с-2;
J2 = (108263±0,5)10-8;
а = 6378137±2 м;
w = 7 292 115-Ю-11 рад-с"1.
Эти постоянные являются исходными для принятой геодезической референц-системы 1980 г.
Зная фундаментальные геодезические постоянные, можно вычислить другие параметры Нормальной Земли по точным формулам. Приведем некоторые формулы, устанавливающие связи между разными параметрами Нормальной Земли с точностью до малых величин второго порядка, что вполне достаточно для решения многих задач высшей геодезии на современном этапе.
Сжатие Земли а связано с параметрами /2и g формулой
(1.14)
где <7 определяется по формуле (1.14).
Нормальный потенциал Uoна поверхности уровенного эллипсоида равен
Масса эллипсоида Мо и нормальная сила тяжести на экваторе уе связаны соотношением
Нормальная сила тяжести у0 на поверхности уровенного эллипсоида на широтах В может быть вычислена по формуле
(1.15)
где
(1.16)
(1.17)
Нормальную силу тяжести у (мГал) во внешнем пространстве находят по формуле
(1.18)
где Н — высота над эллипсоидом, м.
Приведенным выше фундаментальным геодезическим постоянным соответствуют следующие значения полярного сжатия Земли а и нормальной силы тяжести уе на экваторе уровенного эллипсоида:
а = 1:298,257 ± 0,001; уe = 978 033 ± 1 мГал.