
- •Краткий курс сопротивления материалов
- •Часть 1
- •Глава 1. Введение
- •1.1. Задачи и методы сопротивления материалов
- •1.2. Реальный объект и расчётная схема
- •1.2.1. Модели материала
- •1.3. Классификация сил (модели нагружения)
- •1.4. Напряжения
- •1.5. Общие принципы расчёта на прочность
- •Глава 2. Центральное растяжение – сжатие прямого бруса
- •2.1. Усилия и напряжения в поперечном сечении бруса
- •2.2. Условие прочности
- •2.3. Деформации. Закон Гука
- •2.4. Расчёт стержня с учетом собственного веса
- •2.5. Статически неопределимые системы
- •2.5.1. Расчёт на действие нагрузки
- •2.5.2. Температурные напряжения
- •2.5.3. Монтажные напряжения
- •2.6. Механические характеристики материалов
- •2.6.1. Испытание на растяжение малоуглеродистой (мягкой) стали
- •Характеристики прочности
- •Характеристики пластичности
- •Разгрузка и повторное нагружение
- •Диаграммы напряжений
- •2.6.2. Испытание на сжатие различных материалов
- •2.6.3. Определение твёрдости
- •2.6.4. Сравнение свойств различных материалов
- •2.7. Допускаемые напряжения
- •2.8. Потенциальная энергия упругой деформации
- •Глава 3. Напряжённое и деформированное состояние в точке. Теории прочности
- •3.1. Компоненты напряжений. Виды напряжённых состояний
- •3.2. Линейное напряжённое состояние
- •3.3. Плоское напряжённое состояние
- •3.3.1. Прямая задача
- •3.3.2. Обратная задача
- •3.4. Объёмное напряжённое состояние. Общие понятия
- •3.5.Деформации при объёмном напряжённом состоянии. Закон Гука
- •3.5.1. Обобщённый закон Гука
- •3.5.2. Относительная объёмная деформация
- •3.6. Потенциальная энергия упругой деформации
- •3.7. Теории прочности
- •3.7.1. Задачи теорий прочности
- •3.7.2. Классические теории прочности
- •3.7.3. Понятие о новых теориях прочности
- •Глава 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты. Определение положения центра тяжести
- •4.2. Моменты инерции
- •4.3. Зависимость между моментами инерции при параллельном переносе осей
- •4.4. Зависимость между моментами инерции при повороте осей
- •4.5. Главные оси и главные моменты инерции
- •Радиус инерции и момент сопротивления
3.3.1. Прямая задача
Дано: напряжения σх, σу, τху, угол α > 0 (рис.3.8,а).
Определить: напряжения σα и τα (рис.3.8,б).
Рассмотрим равновесие элемента abc. При записи уравнений статики будем определять силу как произведение напряжения на площадь соответствующей грани:
площадь наклонной грани bc = dF;
площадь прямой грани ab = dF ∙ cos α;
площадь прямой грани ac = dF ∙ sin α..
а б в
Рис.3.8
Теперь запишем уравнения проекций всех сил, действующих на элемент abc, на нормаль к наклонной площадке и на ось, совпадающую с этой площадкой (рис.3.8,в).
∑n = 0: σαdF – σx dF cos α ∙ cos α – σу dF sin α ∙ sin α + τxу dF cos α ∙ sin α + τух dF sin α ∙ cos α = 0,
∑t = 0: ταdF + σу dF sin α ∙ cos α + τуx dF sin α ∙ sin α – τxу dF cos α ∙ cos α – σх dF cos α ∙ sin α = 0.
После несложных преобразований и сокращения на dF получаем следующие выражения:
σα = σх cos2α + σy sin2α – τxy sin 2α , (3.9)
. (3.10)
Если исходные площадки являются главными (рис.3.9), то формулы (3.9) и (3.10) упрощаются: σα = σ1cos2α + σ2sin2, (3.11)
Из формулы (3.12) следует, что наибольшее касательное напряжение действует по площадке, наклонённой под углом 450 к главным площадкам:
|
Рис.3.9 |
Преобразуем формулу (3.9), используя выражение для тригонометрических функций
и
.
Получим
. (3.14)
Теперь определим напряжения, действующие по площадке, перпендикулярной к заданной: α1 = α + 900. Воспользуемся формулой (3.14), учитывая, что cos 2α1 = – cos 2α и sin 2α1 = – sin 2α. Получим
. (3.15)
Сложим (3.14) и (3.15), чтобы найти сумму нормальных напряжений, действующих по взаимно перпендикулярным площадкам.
Получим
σα + σα + 90 = σх + σу = const, (3.16)
т.е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам инвариантна по отношению к наклону этих площадок.
3.3.2. Обратная задача
Дано: напряжения σх, σу, τху (рис.3.8,а).
Определить: положение главных площадок и величины главных напряжений σ1 и σ2.
По определению на главных площадках τα = 0. Из формулы (3.10) найдём угол α0 между осью х и одним из главных напряжений.
,
. (3.17)
Величины главных напряжений можно найти по формулам (3.14) и (3.15), подставив в них α0. Удобнее иметь формулы для главных напряжений, не зависящие от углов и тригонометрических функций. Для вывода используем зависимости косинуса и синуса двойного угла от тангенса
,
.
Подставим их в формулу (3.14):
. (*)
Теперь в выражение (*) подставим tg 2α0 по формуле (3.17) и получим значение большего главного напряжения
.
Второе главное напряжение получим, используя формулу (3.15). В результате выражение для главных напряжений при плоском напряжённом состоянии имеет следующий вид:
. (3.18)
Для определения σmax после первого слагаемого ставим «+», а для определения σmin ставим «–». Следует обратить внимание на то, что если одно из главных напряжений, вычисленных по формуле (3.18), окажется отрицательным, то их следует обозначить σ1 и σ3. Если же оба главных напряжений окажутся отрицательными, то σ2 и σ3; оба положительными, то σ1 и σ2.
Главные напряжения обладают свойством экстремальности – одно из них наибольшее, другое – наименьшее из всех возможных в данной точке тела (помним о том, что сумма нормальных напряжений на взаимно перпендикулярных площадках постоянна). Для доказательства исследуем на экстремум функцию σα (формула 3.9). Продифференцируем её и приравняем производную нулю.
– 2τxy
cos
2α
= (σx
– σy)sin
2α
.
Площадки, характеризуемые этими углами, являются главными в соответствии с формулой (3.17).