
Клевчихин - Матан II семестр
.pdfxn
1, 2, . . . , N
x0
xkn xk0
xkn
xkn xk0
RN
|
|
|
|
|
|
|
RN |
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RN |
|
|
|
|
|
xn1 , xn2 , . . . , xnN |
|
|
|
|
|
|
|
|
|
|
|
|
RN |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
xnk |
n N |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xn |
|
|
|
|
|
|
|
|
|
|
|
|
|
ε |
0 |
|
|
|
|
|
n0 |
|
|
|
n |
n0 |
||
|
|
|
|
|
|
|
xn |
x0 |
ε |
|
|
|
|
|
|
|
k |
|
1, 2, . . . , N |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
x1 |
x1 |
|
|
xk |
xk |
xN |
|
xN |
x |
n |
x |
0 |
ε, |
|||||||
|
|
|
|
n |
|
0 |
|
|
n |
0 |
|
n |
|
|
|
0 |
|
|
|
|
|
||
|
|
|
|
|
|
|
xk |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
xk |
|
|
|
|
|
|
|
|
|
k |
1, 2, . . . , N |
|
|
|
|
|
|
|
|
|
|
|
||||
|
lim xnk |
|
|
x0k |
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xn |
||||||
|
n |
|
|
|
x01, . . . , x0N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
ε |
0 |
||||
|
|
|
n0 |
|
|
|
|
k |
1, 2, . . . , N |
|
|
|
|
|
|
|
|
|
|
|
|||
ε |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
N |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
x |
|
x |
|
|
|
xk |
xk 2 |
|
ε |
|
|
|
ε. |
|
|
|
|
|||
|
|
|
n |
0 |
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
n |
0 |
|
|
|
N |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
k |
1 |
|
|
k 1 |
|
|
|
|
|
|
|
|
|
|
|
xn n N |
RN |
xn x1n, x2n, . . . , xNn
ε 0 n0 m, n n0 |
xn xm ε |
ε 0 n0 n n0 p 1 |
xn xn p ε. |
xn n N
RN

|
|
|
|
|
|
|
|
|
|
|
xn n N |
|
|
RN |
|
x0 |
|
|
ε |
0 |
|
|
|
n0 |
|
|
|
n |
n0 |
|
|
xn |
x0 |
ε |
|
|
|
m n0 |
|||
|
|
2 |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||
xn |
xm |
xn x0 |
x0 |
xm |
xn |
x0 |
|
x0 |
xm |
ε |
ε |
ε. |
|
|
2 |
2 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
xn n N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
xk |
xk |
xk |
xk 2 |
x |
n |
x |
m |
|
|
|
|
|
|
n |
0 |
n |
0 |
|
|
|
|
|
|
||
|
|
|
|
k 1 |
|
|
|
|
|
|
|
|
|
|
k |
1, 2, . . . , N |
|
|
|
|
|
|
|
xnk |
n N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim xk |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x0k |
|
x01, x02, . . . , x0N |
|
|
|
|
|
|
xn |
|
|
|
|
|
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ε |
|
|
|
|
x |
|
|
|
|
|
Uε |
x0 |
x : x |
x0 |
ε |
|
|
|
|
||||
δ |
|
U δ |
x0 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
U δ x0 |
x : 0 |
x x0 |
δ |
Uδ x0 |
|
x0 . |
|
||
|
• |
x |
|
|
|
|
|
|
|
E |
|
|||
|
|
|
|
|
x |
|
|
|
E |
δ |
0 : Uδ x |
E. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
U 1 θ |
|
|
|
|
x |
|
|
|
|
|
|
θ |
0, 0, . . . , 0 |
|
|
|
|
1 |
x |
1 |
x |
|
|
|
|
|
|
|
|
|
|
|
x |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
U 1(θ) |
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

• |
|
G |
|
|
|
|
|
|
|
G |
|
x G δ |
0 : Uδ x |
G. |
|
|
|
|
|
|
|
|
|
|
U 1 θ |
x : x |
|
x1 2 |
xN 2 |
1 |
|
|
r−kx−x0k |
|
|
|
|
|
|
|
|
|
|
1 |
|
||
|
x0 |
|
|
|
|
|
|
Ur x0 |
x : x x0 |
|
||||||
|
x |
|
|
|
|
|
r |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ur (x0) r |
|
|
x |
|
|
|
|
|
Ur x0 |
|
|
|
|
||
|
|
|
|
x0 |
|
|
r |
|
δ |
r |
x |
x0 |
0 |
|||
|
• |
|
x |
Uδ x |
Ur x0 |
|
|
|
E |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
U δ |
x |
|
|
|
|
|
|
||||
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
E |
δ |
0 |
U δ |
x |
E . |
|
|||
|
|
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ur x |
|
x RN : |
x x0 |
r |
|
x |
|||||
|
|
|
x x0 r |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
• |
|
|
|
|
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E |
|
|
|
• |
|
|
F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x RN : x x0 |
|
||
|
|
|
x |
|
|
|
|
U r x0 |
|
r |
||||||
|
x0 |
|
|
|
x |
U r x0 |
|
|
|
|
x |
|
||||
|
Ur (x0) |
r |
|
x0 |
r |
|
|
|
|
|
|
δ |
x |
x0 |
r |
|
|
|
Uδ x |
|
|
|
U r |
x0 |
|
|
|
x |
|
||||
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
• |
E |
|
|
|
|
|
|
|
|
|
RN |
|
|
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E |
x E : δ 0 Uδ x E . |
|
|
|
|
|
|
|
RN |
|
|
|
|
|
|
|
|
• |
|
|
|
E |
|
E |
E E |
E |
|
|
|
E |
|
• |
E |
|
|
|
E |
|
|
|
E |
|
|
||
• |
E |
|
|
E |
|
|
|
|
|
|
|
|
|
|
E |
|
E E. |
|
|
|
|
x |
|
|
E |
|
|
|
|
|
|
|
E |
Ex, y
xy
|
|
|
E |
x, y : 0 x |
1, 0 y |
1, x Q, y Q . |
|
|
|
x, y : 0 x 1, 0 |
y 1 |
|
|
|
E |
E |
||||
E |
|
E |
|
|
||
|
|
|
|
|
E |
|
|
|
|
|
|
E |
|
1
2

|
F |
|
|
|
x F c |
x |
|
|
|
F |
|
|
|
|
|
Uδ x |
|
|
F |
F c |
x |
F c |
|
|
Uδ x |
x F c |
|
|
F c |
G |
x |
Gc |
x |
G |
G |
|
|
|
|
Gc |
|
x |
|
Gc |
x Gc Gc |
|
|
|
|
|
|
|
α; β |
R |
RN |
γ : t |
x1 t , . . . , xN t |
|
|
|
RN |
|
|
|
γ
txk t
|
x1 |
x1 t |
|
|
|
|
|
γ : . . . |
|
t |
|
α; β , |
|
|
xN |
xN t |
|
|
|
|
|
α; β |
|
k |
1, 2, . . . , N |
|
|
t |
α; β |
γ t |
x1 t , . . . , xN t |
|
||
D RN |
|
|
D |
|
|
|
γ α |
x1 α , . . . , xN α |
a |
|
a1, . . . , aN , |
||
γ β |
x1 β , . . . , xN β |
b |
|
b1, . . . , bN , |
|
|
|
|
a |
b |
|
|
|
|
|
|
D |
|
||
|
|
|
|
|
D |
|
D |
|
|
|
|
E |
|
D |
|
|
|
|
|
|
|
|
|
E |
E |
y |
|
x |
|
|
x |
|||
|
|
|
|
|
y

D1
D2
D3
D1
D2
|
|
D3 |
|
|
ε 0 |
|
|
|
|
1 |
|
|
ε |
|
2 |
ε |
2 |
2 |
ε |
|
|
|||
22 |
3 |
23 |
||
3 |
|
|
|
|
4 |
|
|
|
|
|
N |
x1, . . . , xN |
f : D R |
|
D RN |
N |
f |
D RN |

x x1, . . . , xN D
f x f x1, . . . , xN
N
RN 1 RN R
z
y
x
z = sin(xy)
|
ℓC f |
x : f x |
C |
z |
x, y |
|
|
z |
x, y |
|
|
z |
x, y |
|
|

|
|
|
|
|
x0 |
x01, . . . , x0N |
D |
RN |
|
||
lim f x |
A |
|
|
|
|
|
|
|
|
||
x |
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
ε 0 δ 0 x : 0 |
x x0 |
δ |
f x |
A |
ε. |
|
|||
|
|
|
|
|
|
lim |
f x1, . . . , xN |
A |
|
||
|
|
|
|
|
|
x1 |
...x01 |
|
|
|
|
|
|
|
|
|
xN |
xN |
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
ε |
0 δ 0 x : 0 |
xk |
xk 2 |
δ |
f x1, . . . , xN |
A |
ε. |
||||
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
k |
1 |
|
|
|
|
|
|
|
|
|
Uε A |
A |
|
|
|
|
|
|
|
|
U δ x0 |
|
x0 |
|
x U δ x0 |
|
|
f |
||||
|
|
Uε A |
|
|
|
|
|
|
|
|
|
|
|
ε 0 δ 0 x U δ x0 |
f x Uε A . |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
A |
f |
|
x |
x0 |
|
|
|
A |
|
|
|
|
|
|
|
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
x1, . . . , xN |
D |
RN |
|
||
lim f x |
A |
|
|
|
|
|
|
|
|
||
x |
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
xn |
D |
dom f |
|
|
|
|
|
||
|
|
xn n N : xn |
x0 |
|
|
|
lim f xn |
A. |
|
|
|
|
|
xn |
x0 |
|
n |
|
|
|
|||
|
|
|
|
|
|
|
|||||
|
|
|
n |
|
|
|
|
|
|
|
|
N

|
|
C-lim f x |
A |
|
H-lim f x |
A. |
|
||||
|
|
x |
x0 |
|
|
|
x |
x0 |
|
|
|
|
|
|
|
|
|
|
C-lim f x |
A |
|
||
|
|
|
|
|
|
|
x |
x0 |
|
|
|
|
ε 0 δ 0 x : 0 |
x x0 |
δ |
f x |
A |
ε. |
|||||
|
|
|
|
|
|
|
xn |
|
xn |
x0 |
|
x0 |
|
|
|
N |
|
|
n |
N |
|
0 |
xn |
|
|
f xn |
|
A |
ε |
|
H-lim f x |
A |
|
||
|
|
|
|
|
|
|
x x0 |
|
|
|
|
|
|
H-lim f x |
A |
C-lim f x |
A |
|
ε |
||||
|
|
x |
x0 |
|
|
x |
x0 |
|
|
|
|
xn : 0 |
xn |
x0 |
1 |
f xn |
A ε |
|
|
|
|
||
n |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
xn |
x0 |
xn |
n |
x0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim f xn |
A |
0 |
|
|
f xn |
A |
ε |
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
•
lim f x |
A |
lim g x |
B |
lim f x g x |
x x0 |
|
x x0 |
|
x x0 |
•
lim f x |
A |
lim g x |
B |
lim f x g x |
x x0 |
|
x x0 |
|
x x0 |
•
lim f x |
A |
lim g x |
B |
0 |
lim |
f x |
|
g x |
|||||
x x0 |
|
x x0 |
|
|
x x0 |
|
|
|
|
|
|
|
|
xn n
x0 δ
0 |
δ |
1 |
|
n |
|||
|
|
xn
A B.
A B.
BA .
0 x x0 δ |
0 |
x x0 |
δ |

• |
|
|
|
|
x0 |
|
|
|
f x |
g x |
|
|
lim f x |
A |
lim g x |
B |
A B |
||
|
|
|
x |
x0 |
|
x x0 |
|
|
|
• |
|
|
|
|
|
|
|
f g h |
|
|
|
|
|
|
x0 |
|
|
|
f x |
g x |
h x |
|
|
|
|
|
|
|
|
|
|
lim f x |
lim h x , |
|
|
|
|||
|
|
x |
x0 |
|
x x0 |
|
|
|
|
|
g |
|
|
|
|
|
|
|
|
f g |
|
|
|
|
|
|
|
|
|
• |
|
|
|
|
|
|
|
F y |
|
y |
y0 |
A |
|
|
y |
f x |
f x1, . . . , xN |
||
|
y0 |
x |
x0 |
|
|
x |
|
|
|
|
|
x0 |
|
f x |
y0 |
|
lim F f x |
A |
|
|
|
|
|
|
|
|
x |
x0 |
|
|
|
|
|
F |
|
y0 |
|
lim F y |
|
|
|
|
|
|
|
|
|
y |
y0 |
F y0 |
|
|
|
|
|
|
|
|
|
x0 |
|
f x |
y0 |
|
|
|
|
|
lim tg xy
|
|
|
|
x |
0 |
x2 y2 |
|
|
|
|
|
y |
0 |
|
|
|
|
|
|
|
xy |
x2 |
y2 |
|
|
|
|
|
2 |
|
|
p q 2 a |
|
x b |
y |
|
tg |
|
|
|
|
|
|
||||
|
xy |
π |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tg xy |
tg xy |
tg |
x2 y2 . |
|
|
|
|
|
|
|
|
2 |
|
tg xy |
|
tg |
|
x2 |
y2 |
|
tg t |
|
t |
||||||
|
|
|
2 |
|
|
|||||||||||
0 lim |
|
|
lim |
|
|
|
|
lim |
|
|
|
lim |
|
|
0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
x 0 |
|
x2 y2 |
x 0 |
x2 |
y2 |
t 0 2t |
t 0 |
|
2t |
|||||||
y 0 |
|
|
y 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
x2 |
y2 |
|
|
tg t |
t |
|
|
2 |
|
|
|||
t |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
x2 |
|
|
|
|
lim 1 |
1 |
x y |
|
||
|
|
|
|
|
|||
|
|
x |
|
|
|
||
|
|
x |
3 |
|
|
|
|
|
|
y |
|
|
|
|