
- •Предисловие
- •Условные обозначения
- •Список сокращений
- •Введение
- •Концептуальная диаграмма
- •Контрольныевопросыизадания
- •Глава 1структура и свойства твердых тел
- •Равновесное расположение частиц в кристалле
- •Идеальные кристаллы. Решетки Бравэ
- •Решетки Бравэ
- •Нормальные колебания решетки. Фононы
- •Структура реальных кристаллов
- •Структурозависимые свойства
- •Жидкие кристаллы
- •1.7. Аморфное состояние
- •Контрольныевопросыизадания
- •Глава 2физические основы квантовой механики
- •2.1. Волновые свойства микрочастиц
- •2.2. Уравнение Шредингера. Волновая функция
- •2.3. Свободный электрон. Фазовая и групповая скорости
- •2.4. Электрон в потенциальной яме
- •2.5. Туннелирование микрочастиц сквозь потенциальный барьер
- •Коэффициент прозрачности барьера
- •2.6. Квантовый гармонический осциллятор
- •2.7. Водородоподобный атом. Постулат Паули
- •Контрольные вопросы и задания
- •Глава 3элементы статистической физики
- •3.1. Термодинамическое и статистическое описание коллектива. Функция распределения
- •3.2. Фермионы и бозоны. Вырожденные и невырожденные коллективы
- •Возможные варианты состояний
- •3.3. Функция распределения Максвелла-Больцмана Химический потенциал
- •3.4. Функция распределения Ферми-Дирака. Энергия Ферми
- •3.5. Функция распределения Бозе-Эйнштейна
- •Контрольные вопросы и задания
- •Глава 4элементы зонной теории твердых тел
- •4.1. Обобществление электронов в кристалле
- •4.2. Модель Кронига-Пенни
- •4.3. Зоны Бриллюэна
- •4.4. Эффективная масса электрона
- •4.5. Зонная структура изоляторов, полупроводников и проводников. Дырки
- •4.6. Примесные уровни
- •Донорные примеси
- •Акцепторные примеси
- •Контрольные вопросы и задания
- •Глава 5электропроводность твердых тел
- •5.1. Проводимость и подвижность носителей
- •5.2. Механизмы рассеяния и подвижность носителей
- •5.3. Концентрация носителей и уровень Ферми в полупроводниках
- •5.4. Электропроводность полупроводников
- •5.5. Электропроводность металлов и сплавов
- •5.6. Сверхпроводимость
- •Температура сверхпроводящего перехода
- •5.7. Основы теории Бардина – Купера – Шриффера
- •5.8. Эффекты Джозефсона
- •Параметры слабосвязанных сверхпроводниковых структур, изготовленных методами интегральной технологии
- •Контрольные вопросы и задания
- •Глава 6 равновесные и неравновесные носители заряда
- •6.1. Генерация и рекомбинация неравновесных носителей. Время жизни
- •6.2. Уравнения непрерывности
- •6.3. Фотоэлектрические явления в полупроводниках
- •3 − Экситонное поглощение; 4 − решеточное поглощение;
- •5 − Поглощение свободными носителями
- •2 − Полупроводниковая пленка; 3 − контактные площадки; 4 − защитное покрытие
- •6.4. Полупроводники в сильном электрическом поле
- •6.5. Токовые неустойчивости в сильных электрических полях
- •6.6. Эффект Ганна
- •Контрольные вопросы и задания
- •Глава 7 Контактные явления
- •7.1. Работа выхода электрона. Контакт металл – металл
- •7.2. Контакт металл – полупроводник
- •7.3. Электронно-дырочный переход
- •7.4. Выпрямляющее действие p-n-перехода. Пробой
- •7.5. Гетеропереходы
- •7.6. Эффект Зеебека
- •7.7. Эффект Пельтье
- •7.8. Фотоэффект в p-n – переходе. Фотодиоды
- •7.9. Излучательные процессы в p-n – переходе. Светодиоды
- •Инжекционные полупроводниковые лазеры
- •Контрольные вопросы и задания
- •Глава 8поверхностные явления в полупроводниках
- •8.1. Поверхностные энергетические состояния
- •8.2. Зонная диаграмма и заряд в приповерхностном слое
- •8.3. Поверхностная проводимость
- •8.4. Эффект поля. Полевые транзисторы
- •8.5. Влияние состояния поверхности на работу полупроводниковых приборов
- •Контрольные вопросы и задания
- •Глава 9 Электронные процессы в тонких пленках и тонкопленочных структурах
- •9.1. Структура и свойства тонких пленок
- •Механизмы электропроводности в диэлектрических пленках
- •9.2. Контакт металл-диэлектрик. M-д-m – структура
- •Глубина обогащенного слоя [20]
- •Глубина области обеднения
- •9.3. Туннелирование сквозь тонкую диэлектрическую пленку
- •9.4. Токи надбарьерной инжекции электронов
- •9.5. Токи, ограниченные пространственным зарядом
- •9.6. Прохождение горячих электронов сквозь тонкие металлические пленки
- •9.7. Активные устройства на основе тонкопленочных структур
- •1. Диоды с резонансным туннелированием
- •2. Диэлектрические диоды
- •3. Тонкопленочный триод на основе топз
- •4. Транзисторы на горячих электронах
- •Контрольные вопросы и задания
- •Глава 10 перспективы развития микроэлектроники
- •10.1. Ограничения интегральной электроники
- •10.2. Функциональная электроника
- •10.3. Системы пониженной размерности. Наноэлектроника
- •10.4. Квантовые одно- и двумерные структуры
- •10.5. Квантовые точки. Одноэлектроника
- •3 А) б) игла островок изолятор затвор исток
- •Контрольные вопросы и задания
- •Заключение
- •Приложения п.1. Фундаментальные физические постоянные
- •П.2. Свойства полупроводников
- •П.3. Некоторые единицы системы си Основные единицы
- •Некоторые производные механические единицы
- •Некоторые производные единицы электрических величин
- •Некоторые производные единицы магнитных величин
- •П.4. Внесистемные единицы, допускаемые к применению
- •П.5. Плотность некоторых твердых тел
- •Библиографический список
- •Алфавитно-Предметный указатель
- •Оглавление
- •424000 Йошкар-Ола, пл. Ленина, 3
- •424006 Йошкар-Ола, ул. Панфилова, 17
9.6. Прохождение горячих электронов сквозь тонкие металлические пленки
Выше мы рассматривали явления, связанные с прохождением носителей сквозь диэлектрические тонкие пленки. Здесь исследуем прохождение так называемыхгорячих электроновчерез тонкие металлические пленки.
Понятие «горячий электрон» относится к неравновесным электронам, энергия которых значительно больше энергии равновесных носителей. Название обусловлено тем, что эквивалентная температура таких электронов значительно больше температуры кристалла. Горячий электрон, попадая в металл, испытывает постоянное взаимодействие с фононами, свободными электронами, дефектами кристаллической решетки. В процессе такого взаимодействия он отдает избыточную энергию и переходит в равновесное состояние. Однако если длина свободного пробега электрона значительно больше толщины пленки, то практически все горячие электроны пройдут сквозь пленку.
Ввод горячих электронов в металлическую пленку удается осуществить за счет туннелирования, инжекции через барьер Шоттки или инжекции на основе токов, ограниченных пространственным зарядом. На рис. 9.9 показаны энергетические диаграммы структур, в которых возможно введение горячих электронов через барьер Шоттки (а) и с помощью туннелирования (б). В первом случае это П1ДП2-структура. За счет приложенного напряженияUвысота потенциального барьера на границе полупроводник-металл существенно меняется, что позволяет реализовать эмиссию Шоттки. Если металлическая пленка достаточно тонкая и рассеяния электронов в ней не происходит, а такжеφэ<φк, то эмиссионный поток электронов достигает второго полупроводникового электрода (П2).
Д
П1
П2
а)б)
Рис. 9.9. Энергетические диаграммы инжекции электронов сквозь металлическую пленку: а– инжекция Шоттки;б– туннелирование
Ввод электронов в металлическую пленку с помощью туннельного эффекта может быть осуществлен, например, в структуре металл-диэлектрик-металл-полупроводник (рис. 9.9, б). Из металла М1электроны туннелируют в диэлектрик, а оттуда попадают в металл М2. Если высота коллекторного барьера меньше, чем энергия электрона -eUэ, то горячие электроны попадают в коллектор-полупроводник.
Ток туннельной эмиссии зависит от толщины металлической пленки dи длины поглощения электроновL
.
(9.38)
Сравнение различных механизмов инжекции носителей показало, что наиболее эффективной является инжекция через барьер Шоттки.
Исследование поведения горячих электронов в тонкой металлической пленке привлекает внимание в связи с возможностью построения транзисторов на горячих электронах.
Действительно, например, ПМП-структура (рис. 9.9, а) в определенных условиях может работать как транзистор, имеющий тонкопленочную металлическую базу. Контактный барьер на границе эмиттер-база (П1М) должен пропускать значительный поток неравновесных горячих электронов в металл и не пропускать встречный поток равновесных электронов. Некоторая часть инжектированных электронов рассеивается и создает базовый ток. Основная часть проходит под контактным барьером и создает коллекторный ток.