Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матрицы.docx
Скачиваний:
109
Добавлен:
16.04.2015
Размер:
591.2 Кб
Скачать

Система m уравнений с n неизвестными.

Система n линейных уравнений с n неизвестными.

Пусть дана квадратная система, т.е. m=n, , т.е. матрица системы квадратная и невырожденная. Δ=|А| - определитель системы.

Теорема 1. СЛАУ с квадратной невырожденной матрицей имеет и притом единственное решение.

Доказательство. Покажем сначала единственность решения (в предположении, что оно существует). Пусть существуют n чисел х12,…,хn такие, что при подстановке в систему все уравнения системы обращаются в верные тождества:

(8)

Тогда умножая тождества (8) соответственно на алгебраические дополнения A1j, A2j,…,Anj элементов j-го столбца определителя  матрицы А=и складывая полученные при этом тождества, получимj=1,2,…,n:

=b1A1j+b2A2j+…+bnAnj.

Т.к., по свойствам определителя,, то из последнего равенства получаем, чтоxj=b1A1j+b2A2j+…+bnAnj (9)

Обозначим Δj – определитель матрицы, получаемой из матрицы системы А заменой j-го столбца столбцом свободных членов.

Тогда равенство (9) примет вид: xj=Δj.

В итоге получаем (j=1,2,…,n) (10) – формулы Крамера (Габриэль Крамер (1704-1752) – швейцарский математик).

Т.о., если решение квадратно системы существует, то оно однозначно определяется формулами (10).

Докажем теперь существование решения. Покажем, что rg (AВ)=rg A.

Т.к. 0, то rg A=n, а расширенная матрица (AВ) содержит только n строк, следовательно rg (AВ)n rg (AВ)=n=rg A ч.т.д.

Матричный способ решения СЛАУ (при помощи А-1).

Матричная запись СЛАУ: АХ=В. (6)

Т.к. матрица системы А квадратная и невырожденная, то существует обратная матрица А-1.Умножая слева обе части матричного равенства (2) на А-1, получим А-1(АХ)=А-1В. Т.к. А-1(АХ)= (А-1А)Х=ЕХ=Х, то решением системы методом обратной матрицы будет матрица-столбец:

Хnx1nxn-1Вnx1 (11)

Пример. ,,,. х1=-4, х2=1, х3=2. А-1=

Система m уравнений с n неизвестными.

Рассмотрим решение системы m уравнений с n неизвестными. Допустим она совместна и rg (AВ)=rg A=r.

Пусть r<n. r переменных х1, х2,…,хr называются базисными (зависимыми, основными), если определитель матрицы из коэффициентов при них (т.е. базисный минор) отличен от нуля. Остальные n-r называются свободными (независимыми, неосновными).

Решение системы (1), в котором все n-r свободных переменных равны нулю, называется базисным.

Т.к. каждому разбиению переменных на базисные и свободные соответствует одно базисное решение, а число способов разбиения не превосходит числа сочетаний , то и базисных решений не более. Т.о. совместная система m линейных уравнений с n переменными (m<n) имеет бесконечное множество решений, среди которых базисных решений конечное число, не превосходящее.

Не ограничивая общности, будем считать, что базисный минор матрицы А расположен в верхнем левом углу.

Тогда первые r строк как основной, так и расширенной матрицы являются базисными и, следовательно (по теореме о базисном миноре) каждая из строк расширенной матрицы, начиная с (r+1)-й, является линейной комбинацией первых r строк.

Это означает, что каждое из уравнений системы, начиная с (r+1)-го, является линейной комбинацией (т.е. следствием) первых r уравнений.

Т.о. достаточно найти все решения только первых r уравнений. Запишем первые r уравнений в виде:

(12)

Если задать свободным неизвестным хr+1r+2,…,xn произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., произвольно выбранный набор чисел сr+1r+2,…,сn однозначно определяют совокупность r чисел c1,c2,…,cr, обращающих в тождество все уравнения системы (12) и определяющиеся по формулам Крамера.

Обозначим символом Mj(di) определитель, получающийся из базисного минора М матрицы системы заменой его j-го столбца столбцом из чисел d1,d2,…,di,…,dr (с сохранением без изменения всех остальных столбцов М). Тогда, записывая решение системы (12) с помощью формул Крамера и пользуясь линейным свойством определителя, получим:

cj=Mj(bi-ai,r+1cr+1-…-aincn)=(Mj(bi)-cr+1Mj(ai,r+1)-…-cnMj(ain)) j=1,2,…,r (13)

Формулы (13) выражают значения неизвестных xj=cj (j=1,2,…,r) через коэффициенты при неизвестных, свободные члены и произвольно заданные параметры cr+1,…,cn.

Докажем, что формулы (13) содержат любое решение системы (1). Пусть ,,…,,,…,- произвольное решение системы (1), тогда оно является и решением системы (12). Но из системы (12) величины,,…,однозначно определяются через величины,…,по формулам Крамера (13). Т.о. при=,…,=формулы (13) дают рассматриваемое решение,,…,,,…,.

Если rg (AВ)=rg A=r=n, то соотношения (13) переходят в формулы:

cj=j=1,2,…,r определяющие единственное решение системы (1). Т.о. система (1) является определенной, если rg (AВ)=rg A=r=nm.

Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Пусть в системе (1) а110 (этого всегда можно добиться при помощи элементарных преобразований). В 1-м уравнении оставляем переменную х1, во всех остальных уравнениях исключаем ее, умножая 1-е уравнение на подходящие числа () и прибавляя к соответственно 2-му, 3-му,…,m-му уравнению системы.

Далее, предполагая а220, аналогичным образом исключаем переменную х2 из всех уравнений, начиная с 3-го. И т.д.

В результате последовательного исключения переменных получаем систему следующего вида:

(14) , где r≤m.

Число нуль в последних m-r уравнениях означает, что их левые части имеют вид . Если хотя бы одно из чиселне равно нулю, то соответствующее равенство противоречиво, и система (14) несовместна.

Т.о. для любой совместной системы числа в системе (14) не равны нулю. Тогда последниеm-r строчки являются тождествами и их можно отбросить при решении системы.

Если r<m (число уравнений меньше числа неизвестных), то система (14) неопределенна и имеет ступенчатый вид.

Если r=m, то система (14) определена и имеет треугольный вид.

Переход системы (1) к равносильной ей системе (14) называется прямым ходом метода Гаусса, а нахождение переменных из системы (14) – обратным ходом.

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей системы А*.

Если система определена, то прямой и обратный ход метода Гаусса можно проводить одновременно: (А|В)~(Е|Х). Вместо столбца свободных членов получаем столбец неизвестных.

Пример.

Пример с. 75.

Пример.

Т.к. r(A)=r(A*)=2<3=n, то система совместна и неопределенна. Кол-во главных переменных равно r(A)=3, кол-во свободных переменных – (n-r)=1. Выберем ненулевой минор 2-го порядка, например . Его столбцы – 1-й и 2-й столбцы А- соответсвуют переменным х1 и х2, а х3-свободная переменная. Обозначим х3=с, тогда х2=4+2с, х1=-8-с. Частное решение системы при с=0: (-8;4;0)

Достоинства метода Гаусса: 1) значительно менее трудоемкий; 2) позволяет однозначно установить, совместна система или нет, а в случае совместности найти ее решения; 3) дает возможность найти ранг матрицы системы.