Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матрицы.docx
Скачиваний:
109
Добавлен:
16.04.2015
Размер:
591.2 Кб
Скачать

Свойства определителей

  1. При транспонировании матрицы ее определитель не изменяется: .

Это свойство вытекает из теоремы о разложении определителя . Т.к. разложение определителя по 1-му столбцу тождественно совпадает с разложениемпо 1-й строке.

Это свойство означает полную равноправность строк и столбцов и позволяет все последующие свойства устанавливать лишь для строк, подразумевая, что они справедливы и для столбцов.

  1. Свойство антисимметрии при перестановке двух строк (столбцов).

При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

Доказательство. Допустим сначала, что переставлены две соседние строки матрицы: i и i+1. Разложим определитель исходной матрицы Δ по элементам i-й строки, а определитель новой матрицы Δ΄ - по элементам (i+1)-й строки. Разложения будут отличаться только знаком, т.к. в разложении определителя Δ΄ каждое алгебраической дополнение Ai+1j будет иметь противоположный знак (множители (-1)i+j сменятся на множители (-1)i+1+j). Т.о. Δ=-Δ΄.

Если переставить не соседние строки, а, например, i-ю и (i+m)-ю, то эту перестановку можно рассматривать как последовательное смещение i-й строки на m строк вниз (при этом каждый раз знак определителя меняется), а (i+m)-й строки на (m-1) вверх и (m-1) раз меняется знак, т.е. знак поменяется нечетное число раз: (m+m-1=2m-1). Следовательно, Δ =-Δ΄.

Для столбцов доказательство аналогично.

3. Линейное свойство определителя.

Некоторая строка а=(а12,…,аn) называется линейной комбинацией строк b=(b1,b2,…,bn), c=(c1,c2,…,cn),…, d=(d1,d2,…,dn), с коэффициентами λ12,…,λk если она равна сумме произведений этих строк на эти числа:

a=λ1b+λ2c+…+λkd, т.е. aj1bj2cj+…+λkdj j=1,2,…,n

Если в определителе n-го порядка  некоторая i-я строка (ai1,ai2,…,ain) является линейной комбинацией строк (bi1,bi2,…,bin) и (ci1,ci2,…,cin) с коэффициентами  и , то =1+2, где 1 – определитель, у которого i-я строка равна (bi1,bi2,…,bin), а все остальные строки такие же, как и у , а где 2 – определитель, у которого i-я строка равна (сi1i2,…,сin), а все остальные строки такие же, как и у .

=+

Доказательство. Разложим каждый из определителей , 1, и 2 по i-й строке по формуле Δ=ai1Ai1+ai2Ai2+…+ainAin=.Заметим, что алгебраические дополнения Aij i-й у всех 3-х определителей одинаковы. Следовательно, формула =1+2 следует из равенств aj=λbj+cj j=1,2,…,n ч.т.д.

Замечание. Линейное свойство справедливо и для случая, когда i-я строка является линейной комбинацией не 2-х, а нескольких строк.

Рассмотренные 3 свойства являются основными свойствами определителя. Следующие 5 свойств являются логическими следствиями этих свойств.

4. Определитель с двумя одинаковыми строками (столбцами), то равен 0.

Док-во. Переставим равные строки (столбцы) местами. С одной стороны, определитель не изменится, а с другой, по св-ву 2, поменяет знак. Т.е. Δ=-Δ, след-но, Δ=0.

5. Если все элементы какой-либо строки (столбца) определителя умножить на число λ, то и определитель умножится на это число λ.

Доказательство. Вытекает из свойства 3 при =0. Ч.т.д.

Замечание. Т.о., за знак определителя можно выносить общий множитель любой строки или столбца в отличие от матрицы, за знак которой можно выносить только общий множитель всех элементов.

Пример. , но

6. Если все элементы некоторой строки (столбца) определителя равны 0, то и сам определитель равен 0.

Доказательство. Это свойство следует из свойства 5 при =0. ч.т.д.

7. Если элементы двух строк (столбцов) определителя пропорциональны, то определитель равен 0.

Доказательство. По свойству 5 коэффициент пропорциональности λ можно вынести за знак определителя, после чего останется определитель с двумя одинаковыми строками: Δ΄=λΔ, где Δ имеет две одинаковые строки и по свойству 4 равен 0. ч.т.д.

8. Определитель не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

Доказательство. Полученный в результате указанного прибавления определитель, по свойству 3, можно разбить на сумму двух определителей, один из которых равен исходному, а второй равен 0 в силу пропорциональности двух строк (столбцов) и свойства 7.: =+0. ч.т.д.

9. Свойство алгебраических дополнений соседних строк (столбцов).

Сумма произведений элементов какой-либо строки (столбца) определителя на соответствующие алгебраические дополнения элементов другой строки (столбца) этого определителя равна 0, т.е. .

Доказательство. Докажем для строк (для столбцов доказательство аналогично). Запишем разложение определителя  по i-й строке:

Δ==ai1Ai1+ai2Ai2+…+ainAin (7)

Т.к. алгебраические дополнения Ai1, Ai2,…,Ain не зависят от элементов i-й строки ai1,ai2,…,аin, то равенство (70 является тождеством относительно ai1,ai2,…,аin и сохраняется при замене чисел ai1,ai2,…,аin любыми другими n числами. Заменив ai1,ai2,…,аin соответствующими элементами любой (отличной от i-й) k-й строки ak1,ak2,…,аkn, получим слева в (7) определитель с двумя одинаковыми строками ak1,ak2,…,аkn, равный нулю по свойству 4. Таким образом:

ak1Ai1+ak2Ai2+…+aknAin=0 ik. Ч.т.д.

10. Сумма произведений произвольных чисел с12,…,сn на алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы. Полученной из данной заменой элементов этой строки (столбца) на числа с12,…,сn.

Свойство также следует из формулы (7).