

35
14.28. ∫(x2 + y3 )dx +(x x − y)dy; L : y = x4 ,0 ≤ x ≤1.
L |
|
|
|
|
|
|
|
|
|
|
|
dx + |
x4 −1 |
dy; L : y = x2 |
|
14.29. ∫ |
y |
|
−1,0≤ x ≤1. |
||||
L |
x +1 |
|
|
y |
|
14.30. ∫ xe−3y dx + yex4 dy; L : y = x2 ,0 ≤ x ≤1.
L
Задание 15. Вычислить криволинейный интеграл второго рода ∫Р(x, y, z)dx +Q(x, y, z)dy + R(x, y, z)dz .
L
15.1. ∫ydx + zdy + xdz; A(0 ;0;0); B(1;2;3);
AB
15.2. ∫(x + y)dx + (y + z)dy + (z + x)dz; A(0; 0;1); B(2;−2;3) .
AB
15.3. ∫e y dx + e2z dy + e3x dz; A(1 ;0;0); B(2;3;4) .
AB
15.4. ∫cos zdx +sin xdy + cos ydz; A(0 ;0;0); B(3;2;1) .
|
AB |
|
|
|
|
15.5. |
∫(z − y)dx + (x − z)dy + (y − x)dz; A(0 ;1;0); B(1;2;3) . |
||||
|
AB |
dx |
+ dy |
+ dz |
|
15.6. |
∫ |
; A(1 ;2;3); B(2;4;6) . |
|||
|
AB |
y |
z |
x |
|
15.7. ∫ yez2 dx + zex2 dy + xe y2 dz; A(0 ;0;0); B(2;3;5).
|
AB |
|
|
|
|
|
|
|
|
|
|
|
|
15.8. |
∫ |
y2 |
dx + |
z2 |
dy + |
x3 |
dz; A(2;2;3); B(3;4;5). |
||||||
|
z |
x |
y |
||||||||||
|
AB |
|
|
|
|
|
|
|
|
||||
15.9. |
|
|
|
|
|
|
|
|
|
||||
∫ |
|
y + xdx + |
z + xdy + x + ydz; A(0 ;0;0); B(2;3;7 ) . |
||||||||||
|
AB |
|
|
|
|
|
|
|
|
|
|
|
|
15.10. ∫ y3dx + z3dy + x3dz; A(0 ;0;1); B(2;4;7 ) .
AB
15.11. ∫ ydx + z2dy + x3dz; a =1;b = 2 ;c = 3.
L

36
15.12. ∫ ydx + 3
zdy + xdz; a =1;b = 4 ;c = 8 .
L
15.13. ∫ xe y dx + xez dy + ex3 dz; a =b = c =1.
L
15.14. ∫ zdx + x2dy + ydz; a = c =1;b = 4.
L
15.15. ∫ y2dx + zdy + x3dz; a =1;b = 3 ;c = 2 .
L
15.16. ∫(z − y)dx + (x − z)dy + (y − x)dz; a =b = 2 ;c = 3; .
L
15.17. ∫(z2 − y2 )dx + (x2 − z2 )dy + (y2 − x2 )dz
L
a=1;b = −1 ;c = 2; .
15.18.∫ yzdx + zxdy + xydz; a = 2;b =1 ;c = −3; .
L
15.19. ∫(y + z)dx + (z + x)dy + (x + y)dz; a =1;b = c = 2 .
L
15.20. ∫(x2 + z2 )dx + (z2 + x2 )dy + (x2 + y2 )dz
L
|
a =2;b = c =−1. |
|||||||
15.21. ∫ ydx + zdy + xydz; R =1;h = 2 . |
||||||||
L |
|
|
z |
|
|
|
|
|
15.22. ∫ |
dx + xdy + y2dz; R = 3;h =1 . |
|||||||
|
||||||||
L |
|
|
y |
|||||
15.23. ∫ xydx + |
z |
dy + y2dz; R = 2;h = 2 . |
||||||
|
||||||||
L |
|
|
|
|
|
x |
||
15.24. ∫ y2dx + x2dy +(x + y)dz; R = 3;h = 2 . |
||||||||
L |
|
|
|
|
|
|
|
|
15.25. ∫ |
z2 |
dx + xdy + (y − x)dz; R = 4;h =1 . |
||||||
|
||||||||
L |
|
|
y |
15.26. ∫(x2 + y2 )dx + (x2 + y2 )dy +(2x − y)dz; R =1;h = 4 .
L
15.27. ∫(x + y)dx + (y − x)dy + x2 ydz; R =2;h = 5 .
L

15.28. ∫ xdx
L y
15.29. ∫(y −
L
37
+ xy dy + xy2dz; R = 3;h = 2 .
2x)dx + (y − x)dy + x3dz; R =1;h = 2 .
15.30. ∫ |
z3 |
dx + |
z |
dy + xydz; R = 2;h = 4 . |
|
y |
x |
||||
L |
|
|
Задание 16. Вычислить криволинейный интеграл по замкнутому контуру
а) непосредственно, б) по формуле Грина.
|
∫P(x, y)dx +Q(x, y)dy |
|
|
(L) |
|
L |
|
|
|
1 |
∫(1− x2 )dx + 2xydy |
y = x, y = 0, x = 3 |
||
|
L |
|
|
|
2 |
∫(1+ y 2 )dx +(x + y)dy |
y = x, y = 2, x = 0 |
||
|
L |
|
|
|
3 |
∫(x2 +2xy)dx +(2xy + y2 )dy |
y = x +1, |
||
|
L |
y = 0, x = 0, x = 3 |
||
4 |
∫ y2dx +(x + y)2 dy |
y = 2 − x, x = 2, y = 2 |
||
|
L |
|
|
|
5 |
∫(x + y)2 dx +(x2 − y2 )dy |
y = 2 − x, x = 0, y = 0 |
||
|
L |
|
|
|
6 |
∫ yx2dx + y2dy |
y = |
|
, y = 0, x =1 |
x |
||||
|
L |
|
|
|
7 |
∫2(y − x)dx + (x + y)dy |
y = 4x − x2 , y = 0 |
||
|
L |
|
|
|
8 |
∫2ydx + (y − x)dy |
y = 4 − x2 (x ≥ 0), |
||
|
L |
y = 0, x = 0 |

|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
||||
9 |
∫(xy + x)dx +(x − y)dy |
y = x2 , y = 0, x = 2 |
||||||
|
L |
|
|
|
|
|
|
|
10 |
∫x2dx +(x + y2 )dy |
|
y = sin x, x [0;π], |
|||||
|
L |
|
|
|
|
y = 0 |
||
11 |
∫ y |
2 |
dx +5dy |
|
|
x2 + y2 = 9 (I четверть), |
||
|
|
|
x = 0, y = 0 |
|||||
|
L |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
12 |
∫ y |
2 |
dx +(2xy +3x |
2 |
)dy |
x2 + y2 =1 (II четверть), |
||
|
|
x = 0, y = 0 |
||||||
|
L |
|
|
|
|
|||
|
|
|
|
|
||||
13 |
∫(2x + y2 )dx +(x + y)2 dy |
x + y = 2, x = 0, y = 0 |
||||||
|
L |
|
|
|
|
|
|
|
14 |
∫ y2dx − x2dy |
|
|
x + y = −3, |
||||
|
L |
|
|
|
|
x = 0, y = 0 |
||
15 |
∫(x − y2 )dx +8xydy |
y = x, y = x2 |
||||||
|
L |
|
|
|
|
|
|
|
16 |
∫− x2 ydx + xy2dy |
|
|
x2 + y2 = 4 |
||||
|
L |
|
|
|
|
|
|
|
17 |
∫(xy − 2y)dx + x2dy |
y = x3 , y = 0, x = 2 |
||||||
|
L |
|
|
|
|
|
|
|
18 |
∫(x + y)dx +3x2dy |
|
x2 + y2 = R2 |
|||||
|
L |
|
|
|
|
|
|
|
19 |
∫(3x2 y + y)dx +(x3 −2y)dy |
y = x2 − x, y = 0 |
||||||
|
L |
|
|
|
|
|
|
|
20 |
∫ x2 ydx + x3dy |
|
|
y = x3 , x = 0, y = 8 |
||||
|
L |
|
|
|
|
|
|
|
21 |
∫(2x2 +3y)dx +(y3 +2x)dy |
|
x2 |
|
||||
|
L |
|
|
|
|
y = 2 − 8 , y = 0 |
||
22 |
∫(x2 + y2 )dx + |
|
|
y = x, y = 2 − x, x = 0 |
||||
|
L |
|
|
|
|
|
|
|

39
|
|
+ (3x2 + 2xy − y2 )dy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
23 |
∫(2xy − y)dx +(x2 +2x)dy |
|
y = x2 − 2x, y = 0 |
||||||||||||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
24 |
∫(xy −5y2 )dx + |
x2 |
dy |
|
y = 2 |
|
, x = 4, y = 0 |
||||||||||||||||||
x |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
|
|
L |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
∫(ex sin y − y)dx + |
|
|
|
y = cos x, y = 0, |
|||||||||||||||||||
25 |
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
; |
π |
|
|||||||
|
|
+ (e |
x |
cos y −1)dy |
|
|
|
|
|
x − |
2 |
2 |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
26 |
∫(3x2 +5y)dx +(2y3 − x)dy |
|
y = ex , y = e, x = 0 |
||||||||||||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
∫(x −5y2 )dx + y3dy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
27 |
|
|
|
|
|
|
|
|
|
x2 |
|
|
|
||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
y = |
1− |
|
|
9 , y = 0 |
||||||||
28 |
∫(3x2 y + y2 )dx +(x3 + y2 )dy |
|
x2 + y2 |
= 9 (I четверть), |
|||||||||||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
x = 0, y = 0 |
|
|
|
|||||||||
29 |
∫2ydx + (5x2 + 2x)dy |
|
y = 2 − x, y = x3 , |
||||||||||||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
x = 0 |
|
|
|
|
|
|
|
|
|
|||
30 |
∫(x |
2 |
+4)dx +(2x − y |
2 |
)dy |
|
y = x − 2, y = −x, |
||||||||||||||||||
|
|
|
x = 0 |
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
Задание |
17. |
Вычислить |
поток |
векторного поля |
||||||||||||||||||
|
а = аxi + аy j + аz k |
через часть плоскости S , |
|
расположенную |
|||||||||||||||||||||
|
в первом октанте (нормаль образует острый угол с осью OZ ). |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
а = аxi + аy j + аz k |
|
|
|
|
|
|
|
|
|
|
S |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
1 |
|
a = x i + y j + z k |
|
|
|
|
x + y + z = 2 |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
x |
|
|
|
|
|
|
|
x = 2y + 2z = 2 |
|
|||||||||||
|
2 |
|
a |
= ( |
|
+ y) j + z k |
|
|
|
|
|
||||||||||||||
2 |
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40
3 |
a = (2х+ у) i + у j + 2z k |
2x + 2y + z − 2 = 0 |
|||
|
|
|
|||
4 |
a = (5 − 2х) i + x(x + у) j + xz k |
x + y + 2z = 2 |
|||
|
|
|
|||
5 |
a = (2 + х) i + у j + z k |
6x +3y + 2z −6 = 0 |
|||
|
|
|
|||
6 |
a = 3хi + 2( у − х) j + 2z k |
2x + y + z − 2 = 0 |
|||
|
|
|
|||
7 |
a = x i − y j + (z + 4y) k |
2x + 6y +3z = 6 |
|||
|
|
|
|||
8 |
a = 3хi +3у j +3z k |
3x + 2y + 6z −6 = 0 |
|||
|
|
|
|||
9 |
a = x i − (y + 4x) j − z k |
2x + y + 2z − 2 = 0 |
|||
|
|
|
|
|
|
|
|
|
3 |
|
3x +3y + 2z = 6 |
10 |
a |
= хi |
+ (z + 2 |
y) k |
|
11 |
a = (3х −8) i +3у j +3z k |
3x + 2y + 2z −6 = 0 |
|||
|
|
|
|||
12 |
a = (х +3y) i − 2 j + z k |
x +3y +3z −3 = 0 |
|||
|
|
|
|||
13 |
a = (х + 2у) i + 2z k |
x + 2y + 2z = 2 |
|||
|
|
|
|||
14 |
a = (x − 2y) i +3y j + (z −7) k |
x + y + z = 2 |
|||
|
|
|
|||
15 |
a = 2хi −3(2y − x) j +3(y + z) k |
3x + y +3z −3 = 0 |
|||
|
|
|
|||
16 |
a = (х −5) i + у j + z k |
3x +3y + z −3 = 0 |
|||
|
|
|
|||
17 |
a = 2x i +5y j + (5z +3х) k |
x + y + z = 3 |
|||
|
|
|
|||
18 |
a = 2(х+ у) i + (у −3) j + 2z k |
2x + 4y + z = 4 |
|||
|
|
|
|||
19 |
a = (2х −3) i + 2у j + 2z k |
2x + y + 4z − 4 = 0 |
|||
|
|
|
|||
20 |
a = (2х + у) i −5 j + 2z k |
4x + 2y + z − 4 = 0 |
|||
|
|
|
|
|
|
41
21 |
a = (4 − х) i + (2 − у) j − z k |
x + 2y + 2z = 4 |
|
|
|
22 |
a = −20 i + y j + (z + х) k |
x + 2y + z − 4 = 0 |
|
|
|
23 |
a = −хi + (7 − у) j − z k |
3x + 2y + z −6 = 0 |
|
|
|
24 |
a = (6 + х) i −(3 − у) j + (z + 2) k |
x + 2y +3z = 6 |
|
|
|
25 |
a = (2х −7) i + 2у j + 2z k |
2x + y +3z −6 = 0 |
|
|
|
26 |
a = 8x i + (7 y −3х) j + 7(z − 4) k |
6x + 2y + z = 6 |
|
|
|
27 |
a = хi + (у −9) j + z k |
2x + y + 6z −6 = 0 |
|
|
|
28 |
a = (х + 2) i − у j + (z + 4у) k |
2x + 2y + z − 4 = 0 |
|
|
|
29 |
a = хi + 4у j + (z −9у) k |
3x +3y + z = 6 |
|
|
|
30 |
a = 2хi −(10 − у) j + (z − х) k |
2x + y + 2z −6 = 0 |
|
|
|