Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1. Экология НОВОЕ 193 с.docx
Скачиваний:
195
Добавлен:
12.04.2015
Размер:
2.36 Mб
Скачать

Круговорот азота

Основные этапы круговорота азота:

  1. растения и животные содержат азот в составе аминокислот и нуклеиновых кислот;

  2. продукты жизнедеятельности организмов (аммиак, мочевина и пр.) и мертвые тела разлагаются с помощью бактерий, при этом азот аминокислот (NH2-) окисляется до нитритов (NO2-), а затем до нитратов (NO3-);

  3. нитраты захватываются растениями и встраиваются в аминокислоты:

Первая стадия реакций идет легко и активно. При внесении удобрений растения тратят на эту стадию все энергетические ресурсы. Вторая стадия реакции – перевод нитритов в аммиак, задерживается в силу её энергоемкости (надо разорвать тройную связь). Нитриты накапливаются в растениях, а в желудке человека образуют нитрозамины – активные канцерогены и мутагены;

  1. мертвая органика разлагается с выделением аммиака (аммонификация). Часть его прочно связывается с гумусом, а избыток (например, при внесении в почву органических удобрений) усваивается растениями;

  2. в океане бактерии группы Псевдомонас восстанавливают нитраты, смываемые с полей до газообразного азота, часть которого возвращается в атмосферу, где его очень много;

  3. происходит биологическая фиксация газообразного азота из атмосферы прокариотами. Для этого безъядерные организмы имеют белок-нитрогеназу, переводящий N2 в NH3. Это очень энергоемкий процесс, все способные на азотфиксацию организмы связывают примерно 15 кг/га в год. Клубеньковые бактерии – симбионты бобовых растений связывают до 300 кг/га в год. В лесу такие клубеньки имеет ольха. Внесение азотных удобрений выключает биологическую фиксацию азота;

  4. связанный азот восстанавливается до газообразного в анаэробных условиях с помощью бактерий (денитрификация, «нитратное дыхание»):

C6H12O6 + 24XNO3 = 30CO2 + 18H2O + 24XOH + 12N2 + Q (570 ккал/г-моль).

Иногда реакция идет не до конца, с выделением опасных парниковых газов NO и NO2. Так разлагается часть избытка удобрений.

Проблемы, связанные с азотом, заключаются в том, что в целях повышения продуктивности агроценозов, человек вносит в почву азотные удобрения. Они усваиваются не более чем на 50 % и выключают биологические механизмы усвоения азота. Смытые в реки нитраты вызывают эвтрофикацию, а накопленные в овощах – отравление. Оксиды азота, вдобавок, образуются в двигателях внутреннего сгорания, и вреда от них гораздо больше, чем от нитратов. Оксиды азота входят в состав фотохимического смога, на свету взаимодействуя с недогоревшими углеводородами топлива, образуют ядовитые озон и ПАН (пероксиацетилнитрат). Окислы азота в некоторых районах дают до 40 % кислотных дождей, под воздействием которых гибнет природное сообщество, разрушаются памятники архитектуры.

Круговорот серы

Сера – биогенный элемент, который почти не бывает в дефиците. В живых организмах сера – основной компонент некоторых аминокислот (цистеин, метионин). Основные звенья круговорота серы:

  1. сера усваивается в виде сульфатов растениями и грибами. При этом сера переходит в двухвалентное состояние (S2-) и встраивается в белковые молекулы;

  2. сера окисляется до сульфатов (SO32-) микроорганизмами при распаде мертвых тел. Меньшая часть сульфатов снова усваивается растениями, большая часть за счет подвижности сульфат-ионов вымывается в океан;

  3. на дне океана бактерии из рода Десульфовибрио отбирают у сульфатов кислород и, тем самым, восстанавливают серу до сероводорода (H2S). Сероводород выносится к поверхности, а затем часть его выносится в воздух;

  4. в воздухе сероводород (H2S) быстро окисляется до сернистого газа (SO2), а затем серного ангидрида (SO3), последний соединяется с парами воды и образует серную кислоту (H2SO4);

  5. H2SO4 с дождями возвращается на сушу. Таким образом на сушу попадает две трети серы, смытой в океан;

  6. происходит приток серы через извержение вулканов;

  7. происходит приток сульфидов (S2-) через разрушение горных пород (пирит – серный колчедан FeS2, медный колчедан CuFeS2);

  8. приток сероводорода происходит через аэробное разложение органики в болотах.

При сжигании топлива, выплавке металлов, при получение элементарной серы из сероводорода горючих газов в атмосферу в виде оксидов попадает ежегодно около 10 млн. т серы. Это превышает природный сток серы. Количество серной кислоты в атмосфере сейчас вдвое больше, чем 150 лет назад. Кислотность (рН) чистой воды равна 7, рН дождевой – 5,6 за счет растворенного в ней СО2 , рН кислотных дождей может достигать 2,5 (концентрация столового уксуса).

Последствиями кислотных дождей являются:

  1. гибель фауны олиготрофных и мезотрофных озер;

  2. усыхание хвойных лесов и гибель подроста, особенно в горах. На хвое разрушается восковой налет, и деревья, не в силах удержать влагу, усыхают, особенно зимой, когда влага из почвы недоступна;

  3. переход алюминия почвы под действием серной кислоты в растворимое состояние, вследствие чего и гибнут корни растений.

В Европе кислотными дождями повреждено от 30 до 60 % хвойных лесов в зависимости от региона. Также страдают северные леса Канады, США и России. Большое количество кислотных дождей в России выпадает в зоне тундры, где чрезвычайно чувствительные к ним мхи и лишайники гибнут, открывая почвенный покров для термокарстовых процессов.

Основная причина образования кислотных осадков – сжигание ископаемого топлива (в угле и нефти в среднем 1 % серы), при их сгорании образуется SО2. Часть серы выбрасывается в виде сероводорода и метилмеркаптана – опасных ядов. Окислы серы (SО2 и SО3) загрязняют атмосферу в городах, так как входят в состав смога. В 1985 году в Хельсинки подписан международный Протокол о снижении эмиссии серы. На пути снижения количества кислотных осадков международным содружеством достигнуты определенные успехи.