
- •Москва 2007
- •Введение
- •Глава 1. Случайные события и их вероятности
- •§1. События. Действия с событиями
- •§2. Общее определение и свойства вероятности
- •ГЛАВА 2. Классическая и геометрическая вероятности
- •§1. Классическое определение вероятности
- •§2. Применение комбинаторного анализа
- •§3. Геометрическое определение вероятности
- •§1. Условная вероятность
- •§2. Теоремы сложения и умножения вероятностей
- •§3. Независимость событий
- •§4. Формула полной вероятности
- •§5. Формула Байеса
- •Глава 4. Схема независимых испытаний. Схема Бернулли
- •§1. Формула Бернулли
- •§2. Формула Пуассона
- •§3. Формулы Муавра – Лапласа
- •Глава 5. Случайные величины и их распределения
- •§1. Понятие случайной величины
- •§2. Функция распределения случайной величины
- •§3. Дискретные случайные величины
- •§4. Непрерывные случайные величины
- •§5. Функция от случайных величин
- •Глава 6. Числовые характеристики случайных величин
- •§1. Математическое ожидание случайной величины
- •§2. Математическое ожидание функции от случайной величины. Свойства математического ожидания
- •§3. Дисперсия. Моменты высших порядков
- •Глава 7. Элементы математической статистики
- •§1. Основные понятия и основные задачи математической статистики
- •§2. Простейшие статистические преобразования
- •§3. Эмпирическая функция распределения
- •§4. Полигон и гистограмма
- •Глава 8. Статистическое оценивание
- •§1. Точечные оценки. Выборочная средняя и выборочная дисперсия
- •§2. Метод моментов
- •§3. Метод максимального правдоподобия
- •§4. Интервальные оценки (доверительные интервалы)
- •Глава 9. Проверка статистических гипотез
- •§1. Основные понятия
- •§2. Проверка гипотезы о значении математического ожидания
- •§3. Проверка гипотезы о равенстве математических ожиданий двух генеральных совокупностей
- •§4. Проверка гипотезы о значении дисперсии генеральной совокупности
- •§5. Проверка гипотезы о равенстве дисперсий двух генеральных совокупностей
- •§6. Проверка гипотезы о распределении. Критерий Пирсона
- •Приложения
- •Используемая литература

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Московский государственный университет приборостроения и информатики
кафедра высшей математики
Теория вероятностей и математическая статистика
Методические указания для студентов дневной формы обучения.
Москва 2007
Составители: д.ф.м.н., проф. А.В. Манжиров, к.ф.м.н. М.Н. Михин УДК 517.
Теория вероятностей и математическая статистика: методические для студентов дневной формы обучения./МГУПИ.Сост. д.ф.м.н., проф. А.В. Манжиров, к.ф.м.н. М.Н. Михин.
Излагаются основные методы решения задач по теории вероятностей и математической статистике. Приведены примеры решения различных типов задач
Пособие предназначено для студентов, обучающихся по дневной форме обучения. Библиогр: .
Рецензент: проф. Головешкин В.А.