
- •Федеральное агентство по образованию
- •Введение
- •1. Панорама современного естествознания
- •1.1. Естественнонаучная и гуманитарная культура
- •1.2.Научный метод
- •1.3. История развития естествознания
- •1.4.Физика - основа современного естествознания
- •2. Иерархия структур в микро-, макро- и мегамире
- •Звёзды. Галактики. Вселенная
- •3. Представление о концепциях материи, движения, пространства и времени
- •3.1.Основные свойства пространства и времени
- •3. 2. Принципы относительности и инвариантность. Симметрия
- •4. Механическое движение. Классическая концепция Ньютона
- •4.1. Физические величины и их единицы измерения
- •4.2. Классическая концепция Ньютона
- •Силы. Закон всемирного тяготения
- •Закон сохранения импульса
- •4.3. Работа, мощность, энергия
- •4.4. Закон сохранения механической энергии
- •4.5. Общефизический закон сохранения энергии
- •5. Колебания и волны
- •5.1. Гармонические колебания и их характеристики
- •5.2. Вынужденные колебания. Резонанс
- •5.3. Волновые процессы
- •5.4. Свойства волн: интерференция, дифракция
- •6. Фундаментальные взаимодействия
- •6.1. Концепции близкодействия и дальнодействия
- •6.2 Виды фундаментальных взаимодействий
- •6.3. Понятие физического поля
- •6.4. Гравитационное поле
- •6.5. Электромагнитные поля и волны
- •6.6. Принцип суперпозиции
- •6.7. Шкала электромагнитных волн
- •7. Статистические и термодинамические свойства макросистем
- •7.1. Основные понятия молекулярной физики
- •7.2. Термодинамические законы
- •7.3. Энтропия
- •7.4. Второе начало термодинамики
- •7.5. Термодинамика открытых систем
- •8. Концепция корпускулярно-волнового дуализма
- •8.1. Природа света
- •8.2. Корпускулярно-волновые свойства микрочастиц
- •8.3. Принципы неопределённости и дополнительности
- •9. Элементы атомной и ядерной физики
- •9.1. Физика атома
- •9.2. Строение атомного ядра
- •9.3. Дефект массы и энергия связи ядра. Явление радиоактивности. Виды радиоактивного распада
- •9.4. Ядерные и термоядерные реакции
- •9.5. Воздействие излучения на человека. Радиационно-биологические процессы
- •10. Развитие химических концепций
- •10.1. Эволюция химических знаний
- •10.2. Основные понятия химии
- •10.3. Периодическая система химических элементов д.И. Менделеева и её современный вид
- •10.4. Виды химической связи
- •10.5. Реакционная способность веществ. Химические реакции
- •Скорость химических реакций. Современный катализ
- •Обратимые и необратимые химические реакции
- •Принцип Ле Шателье
- •Тепловой эффект реакции
- •10.6. Методы качественного и количественного анализа
- •10.7. Синтез вещества
- •11. Мегамир: современные космологические концепции
- •11.1. Концепции эволюции Вселенной
- •11.2. Концепции эволюции звездных объектов
- •Черные дыры
- •Белые карлики
- •Нейтронные звезды
- •Пульсары
- •Квазары
- •11.3. Концепции эволюции Солнечной системы
- •12. Планета Земля и современные представления о литосфере
- •12.2. Теория литосферных плит
- •12.3. Географическая оболочка Земли
- •12.4. Условия, способствующие возникновению жизни на Земле.
- •13. Биосфера. Биологические концепции
- •13.1. Развитие биологических концепций
- •13.2. Концепции происхождения жизни
- •13.3. Принципы развития, эволюции и воспроизводства живых систем
- •13.4. Биосфера и ее свойства
- •13.5. Биологические уровни организации материи
- •13.6. Генетика и эволюция
- •14.Экология в современном мире
- •14.1. Основные направления экологии
- •14.2. Вредные вещества и их реальная опасность
- •14.3. Сохранение озонового слоя
- •14.4. Кислотные осадки
- •14.5. Парниковый эффект
- •14.6. Захоронение радиоактивных отходов
- •15. Феномен Человек
- •15.1. Возникновение человека
- •15.2. Человек: физиология, здоровье, работоспособность, эмоции
- •15.3. Творчество
- •15.4. Биоэтика
- •15.5. Космические и биологические циклы
- •16.Самоорганизация в природе
- •16.1. Синергетика - новая междисциплинарная наука
- •16.2. Порядок из хаоса
- •16.3. Диссипативные структуры
- •16.4. Концепции самоорганизации
- •Принцип универсального эволюционизма. Путь к единой культуре
4.3. Работа, мощность, энергия
Работа
А силы
– скалярная физическая величина,
характеризующая меру действия силы,
приложенной к телу. Работа постоянной
силы на конечном перемещении
:
где
- угол между
и
.
За единицу измерения работы в СИ принят
джоуль:
.
Мощность
N
– скалярная физическая величина,
характеризующая быстроту (скорость)
совершения работы:
,
Вт.
Энергия – скалярная физическая величина, характеризующая общую количественную меру движения и взаимодействия всех видов материи. В механике используют также более краткое определение: механическая энергия – скалярная физическая величина, характеризующая способность тела совершать работу.
Один
из видов механической энергии –
кинетическая энергия
–
энергия движения, определяемая массой
тела и его скоростью. При
.
Положительная работа внешних сил
увеличивает кинетическую энергию тела:
.
Другой
вид механической энергии – потенциальная
энергия,
–
скалярная физическая величина,
характеризующая взаимодействие тел,
зависящее от их взаимного расположения.
Для тел, удаленных друг от друга на
бесконечно большое расстояние, их
потенциальная энергия равна нулю.
При
положительной работе сил взаимодействия
потенциальная энергия уменьшается:
.
Для тел массой
,
расположенных на Земле или в близи неё
.
Потенциальная
энергия гравитационного притяжения
двух материальных точек (см.п. 6.4)
отрицательна; для увеличения
необходимо воздействие внешних сил.
4.4. Закон сохранения механической энергии
Механическая
энергия
системы
материальных точек, находящихся под
действием консервативных сил, остается
постоянной.
В такой системе могут происходить лишь
превращения потенциальной энергии
в
кинетическую
и обратно, но полный запас энергии
системы измениться не может. При наличии
неконсервативных сил (например, сил
трения, сил сопротивления…) механическая
энергия системы не сохраняется, она
уменьшается, что приводит к нагреванию
системы. Такой процесс называетсядиссипацией
(рассеянием) энергии.
Силы
называют консервативными,
если их работа зависит только от
начального и конечного положений тела.
Работа консервативной силы по замкнутой
траектории равна нулю. Примером
консервативной силы является сила
тяготения
.
материальных точек массами
и
(см.
закон всемирного тяготения п. 4.2).
Закон сохранения механической энергии математически выглядит так:
,
где
–
механическая энергия материальной
точки.
Этот закон связан с однородностью времени, то есть с инвариантностью физических законов относительно выбора начала отсчета времени.
4.5. Общефизический закон сохранения энергии
Классическая механика учитывает только кинетическую энергию макроскопического движения тел и их макроскопических частей, а также их потенциальную энергию. Но она полностью отвлекается от внутреннего атомистического строения вещества. При ударе, трении и аналогичных процессах кинетическая энергия видимого движения тел не пропадает. Она только переходит в кинетическую энергию невидимого беспорядочного движения атомов и молекул вещества, а также в потенциальную энергию их взаимодействия. Эта часть энергии получила название внутренней энергии.
Беспорядочное движение атомов и молекул воспринимается нашими органами чувств в виде тепла. Таково физическое объяснение кажущейся потери механической энергии при ударе, трении и пр.
В физике закон сохранения энергии распространяют не только на явления, рассматриваемые в механике, но и на все без исключения процессы, происходящие в природе.
Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую.
Идея этого закона принадлежит Ломоносову, изложившему закон сохранения материи и движения.
,
где
,(
–
количество теплоты,
–
энергия излучения света)
Общефизический закон сохранения энергии не может быть выведен из уравнений механики и должен рассматриваться как одно из наиболее широких обобщений опытных фактов.