Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.doc
Скачиваний:
44
Добавлен:
09.04.2015
Размер:
633.34 Кб
Скачать

6.6. Принцип суперпозиции

Согласно принципу суперпозиции результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Так, слабое гравитационное поле (как причина гравитационного воздействия) с хорошей точностью подчиняется принципу суперпозиции. Математически это выражается следующим образом: ,

где – напряженность гравитационного поля.

Классическое электромагнитное поле также удовлетворяет принципу суперпозиции.

В квантовой механике принцип суперпозиции – один из основных постулатов, определяющий вместе с соотношением неопределенностей Гейзенберга структуру математического аппарата теории.

6.7. Шкала электромагнитных волн

Электромагнитные волны имеют весьма широкий диапазон частот ν и длин λ. Волны различной частоты отличаются друг от друга как по свойствам, так и по способам получения. В этой связи электромагнитные волны принято подразделять на несколько видов, образующих шкалу электромагнитных волн. Резкой границы между соседними видами не существует: частотные интервалы соседних видов взаимно перекрываются.

При этом ультрафиолетовое УФ, инфракрасное ИК излучения и видимый свет ВС возникают при переходе электронов в атоме с более высокой орбиты на более низкую.

7. Статистические и термодинамические свойства макросистем

7.1. Основные понятия молекулярной физики

Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств микросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй - молекулярной физики.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Их поведение анализируется с помощью статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяется свойствами частиц систем, особенностями их движения и усреднёнными значениями кинетических и динамических характеристик этих частиц.

Идеальный газ – это модель газа, в которой не учитывается взаимодействие молекул, а сами молекулы рассматриваются как материальные точки.

Идеальный газ характеризуется внешними и внутренними параметрами. К внешним параметрам относится: давление (р), температура (Т) и объём (V); к внутренним – среднеарифметическая <> и среднеквадратическая <> скорости, средняя энергия <>.

Взаимосвязь между внешними и внутренними параметрами газа описывается молекулярно-кинетической теорией. Например, между Т и <> имеет место следующее соотношение для поступательного движения: молекулы идеального газа:

где - постоянная Больцмана.

Уравнение состояния идеального газа – уравнение Менделеева-Клапейрона имеет вид:

где R=8,31Дж/(моль·К) – универсальная газовая постоянная, М – молярная масса, m – масса газа. ,

где NA=6.02·1023 1/моль – постоянная Авогадро.

Для идеального газа массой m, содержащего N молекул, полная энергия движения молекул, называемая внутренней энергией газа: , гдеi – число степеней свободы молекулы.